Uncertainty assessment of grassland aboveground biomass using quantile regression forests

草原 环境科学 生物量(生态学) 分位数回归 分位数 草地生态系统 遥感 统计 生态学 数学 地理 生物
作者
Shenlin Zhang,Tianjun Wu,Peng Gao,Yahong Liu
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:18 (04) 被引量:2
标识
DOI:10.1117/1.jrs.18.044507
摘要

Accurate monitoring of aboveground biomass (AGB) is crucial in preventing grassland degradation and achieving carbon neutrality. Remote sensing data and machine learning-based methods have been widely used to estimate the grassland AGB from national to regional scales due to their unique advantages of low cost and high efficiency. However, in the context of significant spatial heterogeneity, the estimation process for AGB in this category usually has inherent uncertainty. Existing statistical validation methods are unable to characterize the spatial distribution of uncertainty and generally lack consideration of potential uncertainty in grassland AGB. To address this issue, we developed a framework to map the spatial distribution of uncertainty based on the quantile regression forest model. Furthermore, the framework explored the driving factors of uncertainty using the geographical detector model. The research results show that the quantile regression forests model in the framework well-estimated the grassland AGB and characterized its spatial distribution. Also, the spatial pattern of uncertainty was closely related to the AGB and affected the amount of sampling points. Among the multiple factors, the soil-adjusted vegetation indices were the primary driving force of the uncertainty. This research presents an approach for mapping uncertainty in grassland AGB estimation and spatializing estimation error, which could be an effective complement to existing AGB estimation methods and thus facilitate the accurate management of grassland resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助haheihe采纳,获得10
1秒前
AA发布了新的文献求助10
1秒前
Eraseray完成签到,获得积分10
1秒前
zichun完成签到,获得积分20
2秒前
CipherSage应助哈哈公子25采纳,获得10
4秒前
阿莫西林0107完成签到,获得积分10
6秒前
李春霞发布了新的文献求助10
7秒前
9秒前
xie关注了科研通微信公众号
9秒前
9秒前
Joy完成签到,获得积分20
10秒前
喵喵发文章啦完成签到 ,获得积分10
12秒前
顺利晓露发布了新的文献求助30
13秒前
YY完成签到,获得积分10
14秒前
15秒前
传奇3应助momo采纳,获得10
15秒前
zichun发布了新的文献求助30
15秒前
schahaha发布了新的文献求助10
15秒前
干净的白曼完成签到 ,获得积分10
17秒前
Jasper应助李春霞采纳,获得10
18秒前
20秒前
QIAN完成签到,获得积分10
20秒前
21秒前
凯蒂发布了新的文献求助10
22秒前
Yvonne完成签到,获得积分10
23秒前
梁三柏应助科研通管家采纳,获得10
23秒前
23秒前
124应助科研通管家采纳,获得10
23秒前
Neko应助科研通管家采纳,获得30
23秒前
Singularity应助科研通管家采纳,获得10
23秒前
gtm应助科研通管家采纳,获得20
23秒前
Owen应助科研通管家采纳,获得10
23秒前
顾矜应助科研通管家采纳,获得10
23秒前
Singularity应助科研通管家采纳,获得10
23秒前
梁三柏应助科研通管家采纳,获得10
23秒前
23秒前
梁三柏应助科研通管家采纳,获得10
23秒前
英姑应助科研通管家采纳,获得10
23秒前
烟花应助科研通管家采纳,获得30
23秒前
Neko应助科研通管家采纳,获得30
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672312
求助须知:如何正确求助?哪些是违规求助? 3228717
关于积分的说明 9781603
捐赠科研通 2939143
什么是DOI,文献DOI怎么找? 1610605
邀请新用户注册赠送积分活动 760682
科研通“疑难数据库(出版商)”最低求助积分说明 736174