多硫化物
氧化还原
成核
阴极
材料科学
锂(药物)
硫黄
未成对电子
化学
化学物理
无机化学
物理化学
电极
激进的
有机化学
内分泌学
冶金
医学
电解质
作者
Jing Yu,Chen Huang,Oleg A. Usoltsev,Ashley P. Black,Kapil Gupta,Maria Chiara Spadaro,Ivan Pinto-Huguet,Marc Botifoll,Canhuang Li,Javier Herrero‐Martín,Jinyuan Zhou,Alexandre Ponrouch,Ruirui Zhao,Ll. Balcells,Chaoyue Zhang,Andreu Cabot,Jordi Arbiol
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-07-09
卷期号:18 (29): 19268-19282
被引量:3
标识
DOI:10.1021/acsnano.4c05278
摘要
Catalytic additives able to accelerate the lithium–sulfur redox reaction are a key component of sulfur cathodes in lithium–sulfur batteries (LSBs). Their design focuses on optimizing the charge distribution within the energy spectra, which involves refinement of the distribution and occupancy of the electronic density of states. Herein, beyond charge distribution, we explore the role of the electronic spin configuration on the polysulfide adsorption properties and catalytic activity of the additive. We showcase the importance of this electronic parameter by generating spin polarization through a defect engineering approach based on the introduction of Co vacancies on the surface of CoSe nanosheets. We show vacancies change the electron spin state distribution, increasing the number of unpaired electrons with aligned spins. This local electronic rearrangement enhances the polysulfide adsorption, reducing the activation energy of the Li–S redox reactions. As a result, more uniform nucleation and growth of Li2S and an accelerated liquid–solid conversion in LSB cathodes are obtained. These translate into LSB cathodes exhibiting capacities up to 1089 mA h g–1 at 1 C with 0.017% average capacity loss after 1500 cycles, and up to 5.2 mA h cm–2, with 0.16% decay per cycle after 200 cycles in high sulfur loading cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI