Plasma metabolomics of immune-related adverse events for patients with lung cancer treated with PD-1/PD-L1 inhibitors

医学 不利影响 代谢组学 肺癌 内科学 癌症 肿瘤科 组学 免疫系统 生物信息学 免疫学 生物
作者
Juan Chen,Jia-Si Liu,Junyan Liu,Lei She,Ting Zou,Jing Wang,Xiangping Li,Zhan Wang,Zhaoqian Liu
出处
期刊:Journal for ImmunoTherapy of Cancer [BMJ]
卷期号:12 (7): e009399-e009399
标识
DOI:10.1136/jitc-2024-009399
摘要

Background Metabolomics has the characteristics of terminal effects and reflects the physiological state of biological diseases more directly. Several current biomarkers of multiple omics were revealed to be associated with immune-related adverse events (irAEs) occurrence. However, there is a lack of reliable metabolic biomarkers to predict irAEs. This study aims to explore the potential metabolic biomarkers to predict risk of irAEs and to investigate the association of plasma metabolites level with survival in patients with lung cancer receiving PD-1/PD-L1 inhibitor treatment. Methods The study collected 170 plasmas of 85 patients with lung cancer who received immune checkpoint inhibitors (ICIs) treatment. 58 plasma samples of 29 patients with irAEs were collected before ICIs treatment and at the onset of irAEs. 112 plasma samples of 56 patients who did not develop irAEs were collected before ICIs treatment and plasma matched by treatment cycles to onset of irAEs patients. Untargeted metabolomics analysis was used to identify the differential metabolites before initiating ICIs treatment and during the process that development of irAEs. Kaplan-Meier curves analysis was used to detect the associations of plasma metabolites level with survival of patients with lung cancer. Results A total of 24 differential metabolites were identified to predict the occurrence of irAEs. Baseline acylcarnitines and steroids levels are significantly higher in patients with irAEs, and the model of eight acylcarnitine and six steroid metabolites baseline level predicts irAEs occurrence with area under the curve of 0.91. Patients with lower concentration of baseline decenoylcarnitine(AcCa(10:1) 2, decenoylcarnitine(AcCa(10:1) 3 and hexanoylcarnitine(AcCa(6:0) in plasma would have better overall survival (OS). Moreover, 52 differential metabolites were identified related to irAEs during ICIs treatment, dehydroepiandrosterone sulfate, corticoserone, cortisol, thyroxine and sphinganine 1-phaosphate were significantly decreased in irAEs group while oxoglutaric acid and taurocholic acid were significantly increased in irAEs group. Conclusions High levels of acylcarnitines and steroid hormone metabolites might be risk factor to development of irAEs, and levels of decenoylcarnitine (AcCa(10:1) 2, decenoylcarnitine (AcCa(10:1) 3 and hexanoylcarnitine (AcCa(6:0) could be used to predict OS for patients with lung cancer received ICIs treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特微笑完成签到,获得积分10
刚刚
刚刚
nuonuo完成签到,获得积分10
1秒前
⊙▽⊙完成签到,获得积分10
1秒前
2秒前
MHB发布了新的文献求助50
2秒前
汉堡包应助马保国123采纳,获得10
2秒前
落晨发布了新的文献求助10
2秒前
Hello应助郑开司09采纳,获得10
3秒前
Jiangnj完成签到,获得积分10
3秒前
昵称发布了新的文献求助10
4秒前
含糊发布了新的文献求助10
4秒前
搜集达人应助8564523采纳,获得10
4秒前
无限的隶发布了新的文献求助10
4秒前
不安豁发布了新的文献求助10
4秒前
www发布了新的文献求助10
5秒前
5秒前
Crystal完成签到,获得积分10
6秒前
Laus发布了新的文献求助10
6秒前
orixero应助碱性沉默采纳,获得10
6秒前
今后应助仙子狗尾巴花采纳,获得10
6秒前
tylerconan完成签到 ,获得积分10
7秒前
7秒前
英俊的铭应助隐形的易巧采纳,获得10
8秒前
独特微笑发布了新的文献求助10
8秒前
学海无涯完成签到,获得积分10
8秒前
科研小民工应助机智苗采纳,获得30
8秒前
楼梯口无头女孩完成签到,获得积分10
11秒前
11秒前
Grayball应助gg采纳,获得10
11秒前
11秒前
456发布了新的文献求助10
11秒前
12秒前
凤凰山发布了新的文献求助10
12秒前
独特的绿蝶完成签到,获得积分10
12秒前
12秒前
清歌扶酒发布了新的文献求助10
12秒前
东风完成签到,获得积分10
13秒前
14秒前
呆萌幼晴完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762