Multi-domain awareness for compressed deepfake videos detection over social networks guided by common mechanisms between artifacts

计算机科学 领域(数学分析) 人工智能 压缩传感 机器学习 计算机视觉 人机交互 数学 数学分析
作者
Yan Wang,Qindong Sun,Dongzhu Rong,Rong Geng
出处
期刊:Computer Vision and Image Understanding [Elsevier BV]
卷期号:247: 104072-104072 被引量:5
标识
DOI:10.1016/j.cviu.2024.104072
摘要

The viral spread of massive deepfake videos over social networks has caused serious security problems. Despite the remarkable advancements achieved by existing deepfake detection algorithms, deepfake videos over social networks are inevitably influenced by compression factors. This causes deepfake detection performance to be limited by the following challenging issues: (a) interfering with compression artifacts, (b) loss of feature information, and (c) aliasing of feature distributions. In this paper, we analyze the common mechanism between compression artifacts and deepfake artifacts, revealing the structural similarity between them and providing a reliable theoretical basis for enhancing the robustness of deepfake detection models against compression. Firstly, based on the common mechanism between artifacts, we design a frequency domain adaptive notch filter to eliminate the interference of compression artifacts on specific frequency bands. Secondly, to reduce the sensitivity of deepfake detection models to unknown noise, we propose a spatial residual denoising strategy. Thirdly, to exploit the intrinsic correlation between feature vectors in the frequency domain branch and the spatial domain branch, we enhance deepfake features using an attention-based feature fusion method. Finally, we adopt a multi-task decision approach to enhance the discriminative power of the latent space representation of deepfakes, achieving deepfake detection with robustness against compression. Extensive experiments show that compared with the baseline methods, the detection performance of the proposed algorithm on compressed deepfake videos has been significantly improved. In particular, our model is resistant to various types of noise disturbances and can be easily combined with baseline detection models to improve their robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优秀的酒窝完成签到,获得积分20
刚刚
科目三应助cc采纳,获得10
刚刚
刚刚
Dank1ng发布了新的文献求助10
刚刚
2秒前
甜甜酷盖发布了新的文献求助10
2秒前
2秒前
卡卡发布了新的文献求助10
2秒前
孙天成完成签到,获得积分20
3秒前
科研通AI6应助HarUkii采纳,获得10
4秒前
Lyh应助小新AA采纳,获得10
5秒前
波仔发布了新的文献求助10
5秒前
kkk发布了新的文献求助10
6秒前
5km完成签到,获得积分10
6秒前
莫等闲发布了新的文献求助10
7秒前
冲冲冲完成签到,获得积分10
8秒前
Teewee完成签到,获得积分20
9秒前
星星上的鬼魂完成签到,获得积分10
10秒前
华仔应助spring采纳,获得10
11秒前
11秒前
甜甜酷盖完成签到,获得积分10
12秒前
13秒前
13秒前
hugouFish完成签到,获得积分10
13秒前
可爱的函函应助胡锦余采纳,获得10
14秒前
西羽徐完成签到,获得积分10
14秒前
优秀的酒窝关注了科研通微信公众号
15秒前
wld_gs完成签到,获得积分10
15秒前
眯眯眼的未来完成签到 ,获得积分10
15秒前
15秒前
被风吹过的夏天完成签到,获得积分10
15秒前
寒冷的初雪完成签到,获得积分10
16秒前
long完成签到,获得积分10
16秒前
xxx发布了新的文献求助10
16秒前
FashionBoy应助北城采纳,获得10
16秒前
斯文败类应助糊涂的丹南采纳,获得10
17秒前
星辰大海应助甜蜜含卉采纳,获得10
17秒前
17秒前
fa完成签到,获得积分10
17秒前
HWJ完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5028498
求助须知:如何正确求助?哪些是违规求助? 4264328
关于积分的说明 13293174
捐赠科研通 4072431
什么是DOI,文献DOI怎么找? 2227423
邀请新用户注册赠送积分活动 1235825
关于科研通互助平台的介绍 1160185