Multi-domain awareness for compressed deepfake videos detection over social networks guided by common mechanisms between artifacts

计算机科学 领域(数学分析) 人工智能 压缩传感 机器学习 计算机视觉 人机交互 数学 数学分析
作者
Yan Wang,Qindong Sun,Dongzhu Rong,Rong Geng
出处
期刊:Computer Vision and Image Understanding [Elsevier]
卷期号:247: 104072-104072
标识
DOI:10.1016/j.cviu.2024.104072
摘要

The viral spread of massive deepfake videos over social networks has caused serious security problems. Despite the remarkable advancements achieved by existing deepfake detection algorithms, deepfake videos over social networks are inevitably influenced by compression factors. This causes deepfake detection performance to be limited by the following challenging issues: (a) interfering with compression artifacts, (b) loss of feature information, and (c) aliasing of feature distributions. In this paper, we analyze the common mechanism between compression artifacts and deepfake artifacts, revealing the structural similarity between them and providing a reliable theoretical basis for enhancing the robustness of deepfake detection models against compression. Firstly, based on the common mechanism between artifacts, we design a frequency domain adaptive notch filter to eliminate the interference of compression artifacts on specific frequency bands. Secondly, to reduce the sensitivity of deepfake detection models to unknown noise, we propose a spatial residual denoising strategy. Thirdly, to exploit the intrinsic correlation between feature vectors in the frequency domain branch and the spatial domain branch, we enhance deepfake features using an attention-based feature fusion method. Finally, we adopt a multi-task decision approach to enhance the discriminative power of the latent space representation of deepfakes, achieving deepfake detection with robustness against compression. Extensive experiments show that compared with the baseline methods, the detection performance of the proposed algorithm on compressed deepfake videos has been significantly improved. In particular, our model is resistant to various types of noise disturbances and can be easily combined with baseline detection models to improve their robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达磬完成签到,获得积分10
1秒前
蜘蛛侦探完成签到,获得积分10
1秒前
研究生完成签到 ,获得积分10
3秒前
今后应助早睡早起采纳,获得10
4秒前
大个应助生动的鹰采纳,获得10
5秒前
刘滨豪发布了新的文献求助10
6秒前
直率的芷发布了新的文献求助20
8秒前
鸣蜩十三完成签到,获得积分10
8秒前
牛奶蜂蜜猫眼石完成签到,获得积分10
9秒前
neil完成签到,获得积分10
11秒前
BruceQ完成签到 ,获得积分10
11秒前
12秒前
慧喆完成签到 ,获得积分10
14秒前
科研通AI2S应助咚嗒嗒采纳,获得10
15秒前
Takagi发布了新的文献求助10
15秒前
CCC发布了新的文献求助10
18秒前
房天川发布了新的文献求助10
19秒前
19秒前
金容完成签到,获得积分10
20秒前
良良丸完成签到 ,获得积分10
20秒前
zjrh完成签到,获得积分10
21秒前
马文发布了新的文献求助50
22秒前
华理附院孙文博完成签到 ,获得积分10
22秒前
满意白卉完成签到 ,获得积分10
22秒前
ding应助刘滨豪采纳,获得10
22秒前
852应助xiao123789采纳,获得10
23秒前
regina完成签到,获得积分10
23秒前
Maisie完成签到,获得积分10
23秒前
激昂的沛柔完成签到,获得积分20
23秒前
24秒前
美好眼神发布了新的文献求助20
25秒前
Orange应助蒸馏水采纳,获得10
27秒前
所所应助悦己采纳,获得10
27秒前
LONG完成签到 ,获得积分10
28秒前
眼睛大以寒完成签到 ,获得积分10
29秒前
阿尔法贝塔完成签到 ,获得积分10
31秒前
自然怀梦完成签到,获得积分10
31秒前
结实嚣完成签到,获得积分10
32秒前
甜美的夏之完成签到,获得积分10
34秒前
35秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
How to mix methods: A guide to sequential, convergent, and experimental research designs 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3111686
求助须知:如何正确求助?哪些是违规求助? 2761878
关于积分的说明 7667894
捐赠科研通 2416961
什么是DOI,文献DOI怎么找? 1282944
科研通“疑难数据库(出版商)”最低求助积分说明 619212
版权声明 599512