A two‐stage adaptive robust model for designing a reliable blood supply chain network with disruption considerations in disaster situations

供应链 供应链网络 计算机科学 阶段(地层学) 供应链风险管理 风险分析(工程) 供应链管理 运筹学 业务 服务管理 工程类 古生物学 营销 生物
作者
Ling Qing,Yunqiang Yin,Dujuan Wang,Yugang Yu,T.C.E. Cheng
出处
期刊:Naval Research Logistics [Wiley]
标识
DOI:10.1002/nav.22214
摘要

Abstract We consider multi‐period blood supply chain network design in disaster situations that involve blood donor groups, permanent and temporary blood collection facilities, blood banks, and hospitals. We use a discrete scenario set to model the uncertain blood supply and demand, and the unforeseeable disruptions in permanent blood collection facilities, blood banks, and road links arising from a disaster, where instead of complete failure, disrupted permanent blood collection facilities and blood blanks may only lose part of their capacities. To design a reliable blood supply network to mitigate the possible disruptions, we present a two‐stage adaptive robust model that integrates the location, inventory, and allocation decisions incorporating a blood sharing strategy, where blood can be delivered from a disrupted/non‐disrupted blood bank to disrupted blood banks to enhance the flexibility of the relief network. For this novel problem, we devise an exact algorithm that integrates column‐and‐constraint generation and Benders decomposition and introduce several non‐trivial acceleration techniques to speed up the solution generation process. We conduct extensive numerical studies on random data sets to evaluate the algorithmic performance. We also conduct a case study in Tehran to demonstrate its real‐life applicability and examine the impacts of key model parameters on the solutions. The numerical results verify the benefits of our model over typical benchmarks, that is, deterministic and stochastic models, and the superiority of our solution algorithm over the CPLEX solver and two well‐known solution approaches, that is, column‐and‐constraint generation and Benders decomposition. Finally, based on the numerical results, we derive managerial insights from the analytical findings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西木完成签到,获得积分10
1秒前
hhh完成签到,获得积分10
1秒前
jiangshanshan发布了新的文献求助10
2秒前
心木完成签到 ,获得积分10
3秒前
dddd发布了新的文献求助10
4秒前
lufifi发布了新的文献求助10
7秒前
安详尔岚完成签到 ,获得积分10
7秒前
7秒前
10秒前
鲨鱼辣椒完成签到,获得积分10
10秒前
润润润完成签到 ,获得积分10
11秒前
Geist应助乖乖采纳,获得10
12秒前
给我点光环完成签到,获得积分10
13秒前
13秒前
王月月鸟完成签到,获得积分20
13秒前
科研通AI2S应助时尚的萝采纳,获得10
14秒前
爱读文献完成签到 ,获得积分10
15秒前
Sencetich发布了新的文献求助10
16秒前
缓慢的冬云完成签到 ,获得积分10
16秒前
20秒前
yzxzdm发布了新的文献求助10
21秒前
科研通AI2S应助靳志强采纳,获得10
21秒前
kekao完成签到,获得积分10
24秒前
热寂灬完成签到,获得积分10
24秒前
zerr36发布了新的文献求助10
25秒前
27秒前
CodeCraft应助科研通管家采纳,获得10
27秒前
monere应助foreverer采纳,获得10
27秒前
斯文败类应助科研通管家采纳,获得10
27秒前
威武花瓣完成签到,获得积分20
27秒前
李爱国应助科研通管家采纳,获得30
27秒前
JamesPei应助科研通管家采纳,获得10
27秒前
英俊的铭应助科研通管家采纳,获得10
28秒前
28秒前
Orange应助科研通管家采纳,获得10
28秒前
丘比特应助科研通管家采纳,获得10
28秒前
不配.应助科研通管家采纳,获得10
28秒前
研友_VZG7GZ应助科研通管家采纳,获得10
28秒前
嗯哼应助科研通管家采纳,获得20
28秒前
28秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242666
求助须知:如何正确求助?哪些是违规求助? 2886926
关于积分的说明 8245362
捐赠科研通 2555479
什么是DOI,文献DOI怎么找? 1383551
科研通“疑难数据库(出版商)”最低求助积分说明 649728
邀请新用户注册赠送积分活动 625605