清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Privileged Knowledge State Distillation for Reinforcement Learning-based Educational Path Recommendation

强化学习 计算机科学 蒸馏 路径(计算) 国家(计算机科学) 人工智能 机器学习 算法 化学 有机化学 程序设计语言
作者
Qingyao Li,Wei Xia,Liang Yin,Jiarui Jin,Yong Yu
标识
DOI:10.1145/3637528.3671872
摘要

Educational recommendation seeks to suggest knowledge concepts that match a learner's ability, thus facilitating a personalized learning experience. In recent years, reinforcement learning (RL) methods have achieved considerable results by taking the encoding of the learner's exercise log as the state and employing an RL-based agent to make suitable recommendations. However, these approaches suffer from handling the diverse and dynamic learner's knowledge states. In this paper, we introduce the privileged feature distillation technique and propose the P rivileged K nowledge S tate D istillation (PKSD ) framework, allowing the RL agent to leverage the "actual'' knowledge state as privileged information in the state encoding to help tailor recommendations to meet individual needs. Concretely, our PKSD takes the privileged knowledge states together with the representations of the exercise log for the state representations during training. And through distillation, we transfer the ability to adapt to learners to aknowledge state adapter. During inference, theknowledge state adapter would serve as the estimated privileged knowledge states instead of the real one since it is not accessible. Considering that there are strong connections among the knowledge concepts in education, we further propose to collaborate the graph structure learning for concepts into our PKSD framework. This new approach is termed GEPKSD (Graph-Enhanced PKSD). As our method is model-agnostic, we evaluate PKSD and GEPKSD by integrating them with five different RL bases on four public simulators, respectively. Our results verify that PKSD can consistently improve the recommendation performance with various RL methods, and our GEPKSD could further enhance the effectiveness of PKSD in all the simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jlwang完成签到,获得积分10
12秒前
乏味发布了新的文献求助10
31秒前
37秒前
37秒前
像猫的狗完成签到 ,获得积分10
38秒前
幽默梦山完成签到,获得积分20
39秒前
幽默梦山发布了新的文献求助10
42秒前
zzgpku完成签到,获得积分0
54秒前
在水一方应助幽默梦山采纳,获得10
54秒前
平常的三问完成签到 ,获得积分10
1分钟前
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
kean1943完成签到,获得积分10
1分钟前
minnie完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
缓慢的蜗牛完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
savesunshine1022完成签到,获得积分10
2分钟前
Yangyang完成签到,获得积分10
2分钟前
2分钟前
2分钟前
嘟嘟噜发布了新的文献求助10
2分钟前
舒适以松发布了新的文献求助10
2分钟前
2分钟前
2分钟前
嘟嘟噜完成签到,获得积分10
2分钟前
lorentzh完成签到,获得积分10
3分钟前
笨笨完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
舒适以松完成签到,获得积分10
3分钟前
绿色心情完成签到 ,获得积分10
4分钟前
firesquall完成签到,获得积分10
4分钟前
乏味完成签到,获得积分20
4分钟前
乏味关注了科研通微信公众号
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015363
求助须知:如何正确求助?哪些是违规求助? 3555313
关于积分的说明 11317959
捐赠科研通 3288629
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 811983