Privileged Knowledge State Distillation for Reinforcement Learning-based Educational Path Recommendation

强化学习 计算机科学 蒸馏 路径(计算) 国家(计算机科学) 人工智能 机器学习 算法 化学 有机化学 程序设计语言
作者
Qingyao Li,Wei Xia,Liang Yin,Jiarui Jin,Yong Yu
标识
DOI:10.1145/3637528.3671872
摘要

Educational recommendation seeks to suggest knowledge concepts that match a learner's ability, thus facilitating a personalized learning experience. In recent years, reinforcement learning (RL) methods have achieved considerable results by taking the encoding of the learner's exercise log as the state and employing an RL-based agent to make suitable recommendations. However, these approaches suffer from handling the diverse and dynamic learner's knowledge states. In this paper, we introduce the privileged feature distillation technique and propose the P rivileged K nowledge S tate D istillation (PKSD ) framework, allowing the RL agent to leverage the "actual'' knowledge state as privileged information in the state encoding to help tailor recommendations to meet individual needs. Concretely, our PKSD takes the privileged knowledge states together with the representations of the exercise log for the state representations during training. And through distillation, we transfer the ability to adapt to learners to aknowledge state adapter. During inference, theknowledge state adapter would serve as the estimated privileged knowledge states instead of the real one since it is not accessible. Considering that there are strong connections among the knowledge concepts in education, we further propose to collaborate the graph structure learning for concepts into our PKSD framework. This new approach is termed GEPKSD (Graph-Enhanced PKSD). As our method is model-agnostic, we evaluate PKSD and GEPKSD by integrating them with five different RL bases on four public simulators, respectively. Our results verify that PKSD can consistently improve the recommendation performance with various RL methods, and our GEPKSD could further enhance the effectiveness of PKSD in all the simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
桐桐应助Forward采纳,获得10
2秒前
颜亚妮发布了新的文献求助10
2秒前
冷酷向薇完成签到,获得积分10
3秒前
3秒前
xxy发布了新的文献求助10
4秒前
汉堡包应助piggggggy采纳,获得10
4秒前
344061512完成签到,获得积分10
5秒前
对啊发布了新的文献求助10
5秒前
夏寄风完成签到,获得积分10
5秒前
爱学习的辣妹完成签到,获得积分10
5秒前
天天天蓝发布了新的文献求助10
5秒前
5秒前
红烧饼干完成签到,获得积分10
7秒前
7秒前
Ni发布了新的文献求助10
7秒前
郝雁山发布了新的文献求助30
9秒前
英勇的白风完成签到,获得积分10
9秒前
344061512发布了新的文献求助30
9秒前
Forward完成签到,获得积分10
11秒前
万能图书馆应助小施采纳,获得10
11秒前
闵斯发布了新的文献求助20
12秒前
sun0115完成签到 ,获得积分10
12秒前
12秒前
彭a完成签到,获得积分10
12秒前
勤劳思真完成签到,获得积分20
13秒前
13秒前
小马甲应助wzwz采纳,获得10
14秒前
15秒前
15秒前
16秒前
momo完成签到 ,获得积分10
16秒前
16秒前
勿昂驳回了zhjp应助
16秒前
大模型应助Paul采纳,获得10
16秒前
Month完成签到,获得积分20
16秒前
蘑菇发布了新的文献求助10
18秒前
打打应助smh采纳,获得30
19秒前
Month发布了新的文献求助10
19秒前
桐桐应助xxy采纳,获得10
19秒前
高分求助中
Lire en communiste 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168924
求助须知:如何正确求助?哪些是违规求助? 2820169
关于积分的说明 7929567
捐赠科研通 2480239
什么是DOI,文献DOI怎么找? 1321290
科研通“疑难数据库(出版商)”最低求助积分说明 633152
版权声明 602497