MolCFL: A personalized and privacy-preserving drug discovery framework based on generative clustered federated learning

计算机科学 药物发现 生成语法 生成模型 个性化医疗 药物重新定位 人工智能 万维网 药品 机器学习 生物信息学 医学 生物 精神科
作者
Yan Guo,Yongqiang Gao,Song Jiawei
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:157: 104712-104712
标识
DOI:10.1016/j.jbi.2024.104712
摘要

In today's era of rapid development of large models, the traditional drug development process is undergoing a profound transformation. The vast demand for data and consumption of computational resources are making independent drug discovery increasingly difficult. By integrating federated learning technology into the drug discovery field, we have found a solution that both protects privacy and shares computational power. However, the differences in data held by various pharmaceutical institutions and the diversity in drug design objectives have exacerbated the issue of data heterogeneity, making traditional federated learning consensus models unable to meet the personalized needs of all parties. In this study, we introduce and evaluate an innovative drug discovery framework, MolCFL, which utilizes a multi-layer perceptron (MLP) as the generator and a graph convolutional network (GCN) as the discriminator in a generative adversarial network (GAN). By learning the graph structure of molecules, it generates new molecules in a highly personalized manner and then optimizes the learning process by clustering federated learning, grouping compound data with high similarity. MolCFL not only enhances the model's ability to protect privacy but also significantly improves the efficiency and personalization of molecular design. MolCFL exhibits superior performance when handling non-independently and identically distributed data compared to traditional models. Experimental results show that the framework demonstrates outstanding performance on two benchmark datasets, with the generated new molecules achieving over 90% in Uniqueness and close to 100% in Novelty. MolCFL not only improves the quality and efficiency of drug molecule design but also, through its highly customized clustered federated learning environment, promotes collaboration and specialization in the drug discovery process while ensuring data privacy. These features make MolCFL a powerful tool suitable for addressing the various challenges faced in the modern drug research and development field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx发布了新的文献求助10
2秒前
Aaron567完成签到,获得积分0
2秒前
4秒前
4秒前
5秒前
5秒前
5秒前
智库关注了科研通微信公众号
5秒前
追寻的莺完成签到,获得积分10
6秒前
7秒前
Owen应助夏夜晚风采纳,获得10
7秒前
赵婧秀发布了新的文献求助30
9秒前
123333发布了新的文献求助10
9秒前
Lucas应助HK采纳,获得10
9秒前
10秒前
徐徐图之发布了新的文献求助10
10秒前
在水一方应助xx采纳,获得10
11秒前
wwlllzzttt发布了新的文献求助10
11秒前
豆儿嘚小豆儿应助yuziiii采纳,获得100
11秒前
不要慌完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
科研通AI6.1应助Sheldon采纳,获得10
12秒前
思源应助团子采纳,获得10
13秒前
light完成签到,获得积分10
14秒前
支妙发布了新的文献求助10
15秒前
16秒前
123333完成签到,获得积分20
16秒前
郭郭盖过完成签到,获得积分10
17秒前
17秒前
17秒前
元气马完成签到 ,获得积分10
18秒前
秋夜白完成签到,获得积分10
19秒前
不安desu完成签到,获得积分10
20秒前
Gstar完成签到,获得积分10
20秒前
21秒前
知性的藏鸟完成签到 ,获得积分10
21秒前
22秒前
23秒前
塔塔应助Evall采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770023
求助须知:如何正确求助?哪些是违规求助? 5582550
关于积分的说明 15423156
捐赠科研通 4903584
什么是DOI,文献DOI怎么找? 2638255
邀请新用户注册赠送积分活动 1586124
关于科研通互助平台的介绍 1541285