MolCFL: A personalized and privacy-preserving drug discovery framework based on generative clustered federated learning

计算机科学 药物发现 生成语法 生成模型 个性化医疗 药物重新定位 人工智能 万维网 药品 机器学习 生物信息学 医学 生物 精神科
作者
Yan Guo,Yongqiang Gao,Song Jiawei
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:157: 104712-104712
标识
DOI:10.1016/j.jbi.2024.104712
摘要

In today's era of rapid development of large models, the traditional drug development process is undergoing a profound transformation. The vast demand for data and consumption of computational resources are making independent drug discovery increasingly difficult. By integrating federated learning technology into the drug discovery field, we have found a solution that both protects privacy and shares computational power. However, the differences in data held by various pharmaceutical institutions and the diversity in drug design objectives have exacerbated the issue of data heterogeneity, making traditional federated learning consensus models unable to meet the personalized needs of all parties. In this study, we introduce and evaluate an innovative drug discovery framework, MolCFL, which utilizes a multi-layer perceptron (MLP) as the generator and a graph convolutional network (GCN) as the discriminator in a generative adversarial network (GAN). By learning the graph structure of molecules, it generates new molecules in a highly personalized manner and then optimizes the learning process by clustering federated learning, grouping compound data with high similarity. MolCFL not only enhances the model's ability to protect privacy but also significantly improves the efficiency and personalization of molecular design. MolCFL exhibits superior performance when handling non-independently and identically distributed data compared to traditional models. Experimental results show that the framework demonstrates outstanding performance on two benchmark datasets, with the generated new molecules achieving over 90% in Uniqueness and close to 100% in Novelty. MolCFL not only improves the quality and efficiency of drug molecule design but also, through its highly customized clustered federated learning environment, promotes collaboration and specialization in the drug discovery process while ensuring data privacy. These features make MolCFL a powerful tool suitable for addressing the various challenges faced in the modern drug research and development field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
贺知什么书完成签到,获得积分10
刚刚
歌儿完成签到 ,获得积分10
刚刚
鳈sir发布了新的文献求助10
1秒前
1秒前
rapunzel发布了新的文献求助10
2秒前
wy完成签到 ,获得积分10
3秒前
ddizi发布了新的文献求助10
3秒前
佛人世间完成签到,获得积分10
3秒前
科研通AI6应助ljact采纳,获得10
5秒前
情怀应助Zhu1985采纳,获得10
5秒前
FashionBoy应助内向的昊焱采纳,获得10
5秒前
科研通AI6应助内向的昊焱采纳,获得10
5秒前
无花果应助文艺的草莓采纳,获得10
5秒前
ycy发布了新的文献求助10
6秒前
8秒前
8秒前
9秒前
Ava应助ddizi采纳,获得30
9秒前
9秒前
小池同学完成签到,获得积分10
10秒前
科研通AI6应助121311采纳,获得10
11秒前
Carolin发布了新的文献求助10
11秒前
谦让涵菡完成签到 ,获得积分10
12秒前
王耀武完成签到,获得积分10
12秒前
朴素念之完成签到,获得积分20
13秒前
13秒前
学术裁缝发布了新的文献求助10
13秒前
连冬萱发布了新的文献求助10
13秒前
ruby完成签到,获得积分10
13秒前
大魔王完成签到 ,获得积分10
14秒前
zhang完成签到,获得积分10
14秒前
YW发布了新的文献求助30
14秒前
xg发布了新的文献求助10
15秒前
16秒前
17秒前
18秒前
踏实绮露完成签到 ,获得积分10
18秒前
18秒前
iam小羊人完成签到,获得积分20
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226726
求助须知:如何正确求助?哪些是违规求助? 4398101
关于积分的说明 13688414
捐赠科研通 4262779
什么是DOI,文献DOI怎么找? 2339284
邀请新用户注册赠送积分活动 1336666
关于科研通互助平台的介绍 1292702