MolCFL: A personalized and privacy-preserving drug discovery framework based on generative clustered federated learning

计算机科学 药物发现 生成语法 生成模型 个性化医疗 药物重新定位 人工智能 万维网 药品 机器学习 生物信息学 医学 生物 精神科
作者
Yan Guo,Yongqiang Gao,Song Jiawei
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:157: 104712-104712
标识
DOI:10.1016/j.jbi.2024.104712
摘要

In today's era of rapid development of large models, the traditional drug development process is undergoing a profound transformation. The vast demand for data and consumption of computational resources are making independent drug discovery increasingly difficult. By integrating federated learning technology into the drug discovery field, we have found a solution that both protects privacy and shares computational power. However, the differences in data held by various pharmaceutical institutions and the diversity in drug design objectives have exacerbated the issue of data heterogeneity, making traditional federated learning consensus models unable to meet the personalized needs of all parties. In this study, we introduce and evaluate an innovative drug discovery framework, MolCFL, which utilizes a multi-layer perceptron (MLP) as the generator and a graph convolutional network (GCN) as the discriminator in a generative adversarial network (GAN). By learning the graph structure of molecules, it generates new molecules in a highly personalized manner and then optimizes the learning process by clustering federated learning, grouping compound data with high similarity. MolCFL not only enhances the model's ability to protect privacy but also significantly improves the efficiency and personalization of molecular design. MolCFL exhibits superior performance when handling non-independently and identically distributed data compared to traditional models. Experimental results show that the framework demonstrates outstanding performance on two benchmark datasets, with the generated new molecules achieving over 90% in Uniqueness and close to 100% in Novelty. MolCFL not only improves the quality and efficiency of drug molecule design but also, through its highly customized clustered federated learning environment, promotes collaboration and specialization in the drug discovery process while ensuring data privacy. These features make MolCFL a powerful tool suitable for addressing the various challenges faced in the modern drug research and development field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
mkljl完成签到 ,获得积分10
2秒前
3秒前
7秒前
Gasen发布了新的文献求助30
8秒前
xxl发布了新的文献求助10
9秒前
赘婿应助daiyu采纳,获得10
9秒前
无聊完成签到,获得积分10
12秒前
12秒前
科研通AI2S应助mbf采纳,获得10
15秒前
15秒前
淳于易形完成签到,获得积分10
17秒前
sansronds完成签到,获得积分10
18秒前
19秒前
20秒前
研友_VZG7GZ应助Zephyr采纳,获得10
25秒前
研友_VZG7GZ应助冷静的鼠标采纳,获得10
26秒前
爱教育的张月亮完成签到,获得积分10
31秒前
31秒前
卷卷完成签到,获得积分10
32秒前
默默完成签到 ,获得积分10
32秒前
852发布了新的文献求助10
33秒前
默初完成签到 ,获得积分20
35秒前
卷卷发布了新的文献求助10
36秒前
科研通AI2S应助Purple采纳,获得20
37秒前
38秒前
诚心绿兰完成签到 ,获得积分10
40秒前
诗筠完成签到 ,获得积分10
42秒前
43秒前
45秒前
快乐小子发布了新的文献求助10
45秒前
深情安青应助1111222333采纳,获得10
49秒前
文静萤发布了新的文献求助10
50秒前
50秒前
52秒前
科研通AI2S应助dududu采纳,获得10
52秒前
54秒前
Zephyr发布了新的文献求助10
54秒前
55秒前
bo完成签到,获得积分10
56秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343311
求助须知:如何正确求助?哪些是违规求助? 2970371
关于积分的说明 8643748
捐赠科研通 2650451
什么是DOI,文献DOI怎么找? 1451275
科研通“疑难数据库(出版商)”最低求助积分说明 672118
邀请新用户注册赠送积分活动 661473