MolCFL: A personalized and privacy-preserving drug discovery framework based on generative clustered federated learning

计算机科学 药物发现 生成语法 生成模型 个性化医疗 药物重新定位 人工智能 万维网 药品 机器学习 生物信息学 医学 生物 精神科
作者
Yan Guo,Yongqiang Gao,Song Jiawei
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:157: 104712-104712
标识
DOI:10.1016/j.jbi.2024.104712
摘要

In today's era of rapid development of large models, the traditional drug development process is undergoing a profound transformation. The vast demand for data and consumption of computational resources are making independent drug discovery increasingly difficult. By integrating federated learning technology into the drug discovery field, we have found a solution that both protects privacy and shares computational power. However, the differences in data held by various pharmaceutical institutions and the diversity in drug design objectives have exacerbated the issue of data heterogeneity, making traditional federated learning consensus models unable to meet the personalized needs of all parties. In this study, we introduce and evaluate an innovative drug discovery framework, MolCFL, which utilizes a multi-layer perceptron (MLP) as the generator and a graph convolutional network (GCN) as the discriminator in a generative adversarial network (GAN). By learning the graph structure of molecules, it generates new molecules in a highly personalized manner and then optimizes the learning process by clustering federated learning, grouping compound data with high similarity. MolCFL not only enhances the model's ability to protect privacy but also significantly improves the efficiency and personalization of molecular design. MolCFL exhibits superior performance when handling non-independently and identically distributed data compared to traditional models. Experimental results show that the framework demonstrates outstanding performance on two benchmark datasets, with the generated new molecules achieving over 90% in Uniqueness and close to 100% in Novelty. MolCFL not only improves the quality and efficiency of drug molecule design but also, through its highly customized clustered federated learning environment, promotes collaboration and specialization in the drug discovery process while ensuring data privacy. These features make MolCFL a powerful tool suitable for addressing the various challenges faced in the modern drug research and development field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gnr2000完成签到,获得积分0
刚刚
1秒前
1秒前
BareBear应助赖道之采纳,获得10
1秒前
LEMON完成签到,获得积分10
1秒前
Ava应助buuyoo采纳,获得10
2秒前
情怀应助liuwei采纳,获得10
2秒前
aaefv完成签到,获得积分10
2秒前
小小菜鸟发布了新的文献求助10
2秒前
深情安青应助123采纳,获得10
2秒前
赫初晴完成签到 ,获得积分10
2秒前
平淡的亦丝应助明研采纳,获得20
2秒前
4秒前
库外发布了新的文献求助10
5秒前
汉堡包应助清新的冷松采纳,获得10
5秒前
从心应助LiShin采纳,获得10
5秒前
帅气的听莲完成签到,获得积分10
5秒前
英姑应助Areslcy采纳,获得10
5秒前
善学以致用应助zxz采纳,获得10
6秒前
whatever应助luoshi采纳,获得10
7秒前
7秒前
科研通AI5应助徐徐采纳,获得10
8秒前
shouyu29应助MADKAI采纳,获得10
8秒前
shouyu29应助MADKAI采纳,获得10
8秒前
Lucas应助MADKAI采纳,获得10
8秒前
Vii应助MADKAI采纳,获得10
8秒前
李爱国应助MADKAI采纳,获得10
8秒前
李健应助MADKAI采纳,获得10
8秒前
烟花应助MADKAI采纳,获得20
8秒前
香蕉觅云应助MADKAI采纳,获得10
8秒前
科研通AI2S应助MADKAI采纳,获得10
8秒前
Singularity应助MADKAI采纳,获得10
8秒前
9秒前
9秒前
赘婿应助GGZ采纳,获得10
9秒前
阿盛完成签到,获得积分10
9秒前
9秒前
怕孤单的含羞草完成签到 ,获得积分10
10秒前
Muuu发布了新的文献求助10
10秒前
仁爱的乐枫完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762