MolCFL: A personalized and privacy-preserving drug discovery framework based on generative clustered federated learning

计算机科学 药物发现 生成语法 生成模型 个性化医疗 药物重新定位 人工智能 万维网 药品 机器学习 生物信息学 医学 生物 精神科
作者
Yan Guo,Yongqiang Gao,Song Jiawei
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:157: 104712-104712
标识
DOI:10.1016/j.jbi.2024.104712
摘要

In today's era of rapid development of large models, the traditional drug development process is undergoing a profound transformation. The vast demand for data and consumption of computational resources are making independent drug discovery increasingly difficult. By integrating federated learning technology into the drug discovery field, we have found a solution that both protects privacy and shares computational power. However, the differences in data held by various pharmaceutical institutions and the diversity in drug design objectives have exacerbated the issue of data heterogeneity, making traditional federated learning consensus models unable to meet the personalized needs of all parties. In this study, we introduce and evaluate an innovative drug discovery framework, MolCFL, which utilizes a multi-layer perceptron (MLP) as the generator and a graph convolutional network (GCN) as the discriminator in a generative adversarial network (GAN). By learning the graph structure of molecules, it generates new molecules in a highly personalized manner and then optimizes the learning process by clustering federated learning, grouping compound data with high similarity. MolCFL not only enhances the model's ability to protect privacy but also significantly improves the efficiency and personalization of molecular design. MolCFL exhibits superior performance when handling non-independently and identically distributed data compared to traditional models. Experimental results show that the framework demonstrates outstanding performance on two benchmark datasets, with the generated new molecules achieving over 90% in Uniqueness and close to 100% in Novelty. MolCFL not only improves the quality and efficiency of drug molecule design but also, through its highly customized clustered federated learning environment, promotes collaboration and specialization in the drug discovery process while ensuring data privacy. These features make MolCFL a powerful tool suitable for addressing the various challenges faced in the modern drug research and development field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JamesPei应助xu采纳,获得10
刚刚
1秒前
long发布了新的文献求助10
1秒前
慕青应助含蓄绿兰采纳,获得10
1秒前
爆米花应助月岛滴滴采纳,获得30
1秒前
Alexis_H发布了新的文献求助10
1秒前
格林发布了新的文献求助10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
手术刀发布了新的文献求助10
4秒前
dxannie发布了新的文献求助30
4秒前
赘婿应助yanyan采纳,获得10
4秒前
JJ完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
天天快乐应助吴筮采纳,获得10
4秒前
tigerli发布了新的文献求助10
5秒前
丰富的小不完成签到,获得积分10
5秒前
5秒前
蓝天发布了新的文献求助10
5秒前
Broke_perferct完成签到,获得积分10
6秒前
Ww发布了新的文献求助10
6秒前
6秒前
迷路的三问完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
格林完成签到,获得积分10
8秒前
CipherSage应助chong0919采纳,获得10
8秒前
隐形曼青应助碧蓝青梦采纳,获得10
9秒前
9秒前
领导范儿应助烽火残心采纳,获得10
9秒前
9秒前
上官若男应助起名太难了采纳,获得10
9秒前
扑流萤发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5758956
求助须知:如何正确求助?哪些是违规求助? 5518438
关于积分的说明 15392719
捐赠科研通 4896143
什么是DOI,文献DOI怎么找? 2633584
邀请新用户注册赠送积分活动 1581565
关于科研通互助平台的介绍 1537189