亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MolCFL: A personalized and privacy-preserving drug discovery framework based on generative clustered federated learning

计算机科学 药物发现 生成语法 生成模型 个性化医疗 药物重新定位 人工智能 万维网 药品 机器学习 生物信息学 医学 生物 精神科
作者
Yan Guo,Yongqiang Gao,Song Jiawei
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:157: 104712-104712
标识
DOI:10.1016/j.jbi.2024.104712
摘要

In today's era of rapid development of large models, the traditional drug development process is undergoing a profound transformation. The vast demand for data and consumption of computational resources are making independent drug discovery increasingly difficult. By integrating federated learning technology into the drug discovery field, we have found a solution that both protects privacy and shares computational power. However, the differences in data held by various pharmaceutical institutions and the diversity in drug design objectives have exacerbated the issue of data heterogeneity, making traditional federated learning consensus models unable to meet the personalized needs of all parties. In this study, we introduce and evaluate an innovative drug discovery framework, MolCFL, which utilizes a multi-layer perceptron (MLP) as the generator and a graph convolutional network (GCN) as the discriminator in a generative adversarial network (GAN). By learning the graph structure of molecules, it generates new molecules in a highly personalized manner and then optimizes the learning process by clustering federated learning, grouping compound data with high similarity. MolCFL not only enhances the model's ability to protect privacy but also significantly improves the efficiency and personalization of molecular design. MolCFL exhibits superior performance when handling non-independently and identically distributed data compared to traditional models. Experimental results show that the framework demonstrates outstanding performance on two benchmark datasets, with the generated new molecules achieving over 90% in Uniqueness and close to 100% in Novelty. MolCFL not only improves the quality and efficiency of drug molecule design but also, through its highly customized clustered federated learning environment, promotes collaboration and specialization in the drug discovery process while ensuring data privacy. These features make MolCFL a powerful tool suitable for addressing the various challenges faced in the modern drug research and development field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵振栋发布了新的文献求助10
刚刚
暴走乄发布了新的文献求助20
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
12秒前
小马甲应助无情墨镜采纳,获得10
15秒前
可乐完成签到,获得积分20
15秒前
xiao发布了新的文献求助10
16秒前
yanifang发布了新的文献求助10
17秒前
19秒前
Davidjin发布了新的文献求助10
25秒前
典雅的人生应助可乐采纳,获得10
26秒前
27秒前
30秒前
hsx发布了新的文献求助30
31秒前
Hello应助高涵采纳,获得10
32秒前
33秒前
西门紫雪发布了新的文献求助10
34秒前
WIS完成签到,获得积分10
36秒前
归尘发布了新的文献求助30
39秒前
蛋白积聚完成签到,获得积分10
46秒前
爆米花应助暴走乄采纳,获得10
49秒前
向阳完成签到 ,获得积分10
50秒前
华仔应助不能随便采纳,获得10
52秒前
hsx完成签到,获得积分10
54秒前
慕青应助小羊采纳,获得10
59秒前
59秒前
59秒前
yuij发布了新的文献求助10
1分钟前
不能随便发布了新的文献求助10
1分钟前
1分钟前
Dopamine完成签到 ,获得积分10
1分钟前
小马甲应助皓轩采纳,获得10
1分钟前
纯真如松发布了新的文献求助10
1分钟前
小白完成签到 ,获得积分10
1分钟前
karry发布了新的文献求助10
1分钟前
1分钟前
Selena完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723399
求助须知:如何正确求助?哪些是违规求助? 5276969
关于积分的说明 15298660
捐赠科研通 4871905
什么是DOI,文献DOI怎么找? 2616323
邀请新用户注册赠送积分活动 1566184
关于科研通互助平台的介绍 1523064