已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MolCFL: A personalized and privacy-preserving drug discovery framework based on generative clustered federated learning

计算机科学 药物发现 生成语法 生成模型 个性化医疗 药物重新定位 人工智能 万维网 药品 机器学习 生物信息学 医学 生物 精神科
作者
Yan Guo,Yongqiang Gao,Song Jiawei
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:157: 104712-104712
标识
DOI:10.1016/j.jbi.2024.104712
摘要

In today's era of rapid development of large models, the traditional drug development process is undergoing a profound transformation. The vast demand for data and consumption of computational resources are making independent drug discovery increasingly difficult. By integrating federated learning technology into the drug discovery field, we have found a solution that both protects privacy and shares computational power. However, the differences in data held by various pharmaceutical institutions and the diversity in drug design objectives have exacerbated the issue of data heterogeneity, making traditional federated learning consensus models unable to meet the personalized needs of all parties. In this study, we introduce and evaluate an innovative drug discovery framework, MolCFL, which utilizes a multi-layer perceptron (MLP) as the generator and a graph convolutional network (GCN) as the discriminator in a generative adversarial network (GAN). By learning the graph structure of molecules, it generates new molecules in a highly personalized manner and then optimizes the learning process by clustering federated learning, grouping compound data with high similarity. MolCFL not only enhances the model's ability to protect privacy but also significantly improves the efficiency and personalization of molecular design. MolCFL exhibits superior performance when handling non-independently and identically distributed data compared to traditional models. Experimental results show that the framework demonstrates outstanding performance on two benchmark datasets, with the generated new molecules achieving over 90% in Uniqueness and close to 100% in Novelty. MolCFL not only improves the quality and efficiency of drug molecule design but also, through its highly customized clustered federated learning environment, promotes collaboration and specialization in the drug discovery process while ensuring data privacy. These features make MolCFL a powerful tool suitable for addressing the various challenges faced in the modern drug research and development field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LANER完成签到,获得积分10
刚刚
rjtmu完成签到,获得积分10
3秒前
4秒前
mashibeo完成签到,获得积分10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
强健的迎波完成签到,获得积分10
7秒前
LANER发布了新的文献求助10
11秒前
yyyyyyyyyyyiiii完成签到 ,获得积分10
14秒前
司忆完成签到 ,获得积分10
17秒前
alan完成签到 ,获得积分10
22秒前
直率奇迹完成签到 ,获得积分10
22秒前
23秒前
26秒前
亓雅丽发布了新的文献求助10
27秒前
ii完成签到 ,获得积分10
28秒前
tuanheqi发布了新的文献求助20
31秒前
zakarya发布了新的文献求助10
32秒前
荀万声完成签到,获得积分10
32秒前
汉堡包应助幽悠梦儿采纳,获得10
39秒前
iW完成签到 ,获得积分10
40秒前
锦城纯契完成签到 ,获得积分10
43秒前
小y完成签到,获得积分10
44秒前
Sy关闭了Sy文献求助
44秒前
迅速天空完成签到 ,获得积分10
45秒前
月上柳梢头A1完成签到,获得积分10
46秒前
坦率的从丹完成签到 ,获得积分10
52秒前
Leety完成签到 ,获得积分10
54秒前
yotta关注了科研通微信公众号
56秒前
Sy完成签到,获得积分10
57秒前
1分钟前
科研通AI2S应助DrW1111采纳,获得10
1分钟前
1分钟前
1分钟前
jokerhoney完成签到,获得积分10
1分钟前
干净思远完成签到,获得积分10
1分钟前
kk发布了新的文献求助10
1分钟前
今后应助哈哈哈采纳,获得10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965542
求助须知:如何正确求助?哪些是违规求助? 3510831
关于积分的说明 11155263
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176