MolCFL: A personalized and privacy-preserving drug discovery framework based on generative clustered federated learning

计算机科学 药物发现 生成语法 生成模型 个性化医疗 药物重新定位 人工智能 万维网 药品 机器学习 生物信息学 医学 生物 精神科
作者
Yan Guo,Yongqiang Gao,Song Jiawei
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:157: 104712-104712
标识
DOI:10.1016/j.jbi.2024.104712
摘要

In today's era of rapid development of large models, the traditional drug development process is undergoing a profound transformation. The vast demand for data and consumption of computational resources are making independent drug discovery increasingly difficult. By integrating federated learning technology into the drug discovery field, we have found a solution that both protects privacy and shares computational power. However, the differences in data held by various pharmaceutical institutions and the diversity in drug design objectives have exacerbated the issue of data heterogeneity, making traditional federated learning consensus models unable to meet the personalized needs of all parties. In this study, we introduce and evaluate an innovative drug discovery framework, MolCFL, which utilizes a multi-layer perceptron (MLP) as the generator and a graph convolutional network (GCN) as the discriminator in a generative adversarial network (GAN). By learning the graph structure of molecules, it generates new molecules in a highly personalized manner and then optimizes the learning process by clustering federated learning, grouping compound data with high similarity. MolCFL not only enhances the model's ability to protect privacy but also significantly improves the efficiency and personalization of molecular design. MolCFL exhibits superior performance when handling non-independently and identically distributed data compared to traditional models. Experimental results show that the framework demonstrates outstanding performance on two benchmark datasets, with the generated new molecules achieving over 90% in Uniqueness and close to 100% in Novelty. MolCFL not only improves the quality and efficiency of drug molecule design but also, through its highly customized clustered federated learning environment, promotes collaboration and specialization in the drug discovery process while ensuring data privacy. These features make MolCFL a powerful tool suitable for addressing the various challenges faced in the modern drug research and development field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美满的凤灵完成签到,获得积分10
刚刚
英姑应助中和皇极采纳,获得10
1秒前
1秒前
Nnn发布了新的文献求助10
1秒前
虎牙少年完成签到,获得积分10
1秒前
H哈发布了新的文献求助30
2秒前
蜡笔小新发布了新的文献求助10
2秒前
2秒前
2秒前
开元完成签到,获得积分10
2秒前
搞怪香彤完成签到,获得积分10
3秒前
nicheng_jason发布了新的文献求助10
3秒前
纸张猫猫完成签到,获得积分10
3秒前
ccc完成签到,获得积分10
5秒前
5秒前
王梦如发布了新的文献求助10
5秒前
CodeCraft应助俭朴琦采纳,获得10
6秒前
xqy发布了新的文献求助10
6秒前
yang完成签到,获得积分10
8秒前
ccc发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
大名姓廖完成签到,获得积分20
9秒前
queenie发布了新的文献求助10
9秒前
科研通AI6应助上官采纳,获得10
9秒前
炙热千柳发布了新的文献求助10
10秒前
科研通AI6应助和谐的敏采纳,获得100
11秒前
世界随心走完成签到,获得积分10
11秒前
11秒前
现代孤萍完成签到,获得积分10
11秒前
12秒前
12秒前
阿玖完成签到 ,获得积分10
12秒前
Devil完成签到 ,获得积分10
12秒前
13秒前
大名姓廖发布了新的文献求助10
14秒前
15秒前
dora发布了新的文献求助10
15秒前
明时完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589211
求助须知:如何正确求助?哪些是违规求助? 4674034
关于积分的说明 14791210
捐赠科研通 4627901
什么是DOI,文献DOI怎么找? 2532185
邀请新用户注册赠送积分活动 1500827
关于科研通互助平台的介绍 1468437