亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MolCFL: A personalized and privacy-preserving drug discovery framework based on generative clustered federated learning

计算机科学 药物发现 生成语法 生成模型 个性化医疗 药物重新定位 人工智能 万维网 药品 机器学习 生物信息学 医学 生物 精神科
作者
Yan Guo,Yongqiang Gao,Song Jiawei
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:157: 104712-104712
标识
DOI:10.1016/j.jbi.2024.104712
摘要

In today's era of rapid development of large models, the traditional drug development process is undergoing a profound transformation. The vast demand for data and consumption of computational resources are making independent drug discovery increasingly difficult. By integrating federated learning technology into the drug discovery field, we have found a solution that both protects privacy and shares computational power. However, the differences in data held by various pharmaceutical institutions and the diversity in drug design objectives have exacerbated the issue of data heterogeneity, making traditional federated learning consensus models unable to meet the personalized needs of all parties. In this study, we introduce and evaluate an innovative drug discovery framework, MolCFL, which utilizes a multi-layer perceptron (MLP) as the generator and a graph convolutional network (GCN) as the discriminator in a generative adversarial network (GAN). By learning the graph structure of molecules, it generates new molecules in a highly personalized manner and then optimizes the learning process by clustering federated learning, grouping compound data with high similarity. MolCFL not only enhances the model's ability to protect privacy but also significantly improves the efficiency and personalization of molecular design. MolCFL exhibits superior performance when handling non-independently and identically distributed data compared to traditional models. Experimental results show that the framework demonstrates outstanding performance on two benchmark datasets, with the generated new molecules achieving over 90% in Uniqueness and close to 100% in Novelty. MolCFL not only improves the quality and efficiency of drug molecule design but also, through its highly customized clustered federated learning environment, promotes collaboration and specialization in the drug discovery process while ensuring data privacy. These features make MolCFL a powerful tool suitable for addressing the various challenges faced in the modern drug research and development field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
务实的天空完成签到,获得积分10
2秒前
迅速初柳发布了新的文献求助10
3秒前
5秒前
7秒前
yuke完成签到,获得积分10
7秒前
8秒前
我是老大应助迅速初柳采纳,获得10
10秒前
123发布了新的文献求助10
11秒前
cc发布了新的文献求助10
12秒前
把饭拼好给你完成签到 ,获得积分10
16秒前
小面包说晚安完成签到,获得积分10
19秒前
21秒前
hanhan完成签到,获得积分10
25秒前
酷酷海豚完成签到,获得积分10
27秒前
hanhan发布了新的文献求助10
28秒前
cc关闭了cc文献求助
30秒前
张佳宁发布了新的文献求助10
32秒前
35秒前
39秒前
善学以致用应助花椰菜采纳,获得10
45秒前
cc完成签到,获得积分20
48秒前
浮游漂漂完成签到 ,获得积分10
51秒前
51秒前
绿大暗完成签到,获得积分10
56秒前
3927456843发布了新的文献求助10
56秒前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
快乐若云应助科研通管家采纳,获得10
1分钟前
忧伤的绍辉完成签到 ,获得积分10
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746460
求助须知:如何正确求助?哪些是违规求助? 5434797
关于积分的说明 15355420
捐赠科研通 4886401
什么是DOI,文献DOI怎么找? 2627238
邀请新用户注册赠送积分活动 1575707
关于科研通互助平台的介绍 1532471