Identification of macrotrabecular‐massive hepatocellular carcinoma through multiphasic CT‐based representation learning method

肝细胞癌 鉴定(生物学) 放射科 医学 肿瘤科 内科学 植物 生物
作者
Zhenyang Zhang,Wanli Zhang,Chutong He,Jincheng Xie,Fangrong Liang,Yandong Zhao,Tan Lilian,Shengsheng Lai,Xinqing Jiang,Xinhua Wei,Xin Zhen,Yang Ruimeng
出处
期刊:Medical Physics [Wiley]
卷期号:51 (12): 9017-9030
标识
DOI:10.1002/mp.17401
摘要

Macrotrabecular-massive hepatocellular carcinoma (MTM-HCC) represents an aggressive subtype of HCC and is associated with poor survival. To investigate the performance of a representation learning-based feature fusion strategy that employs a multiphase contrast-enhanced CT (mpCECT)-based latent feature fusion (MCLFF) model for MTM-HCC identification. A total of 206 patients (54 MTM HCC, 152 non-MTM HCC) who underwent preoperative mpCECT with surgically confirmed HCC between July 2017 and December 2022 were retrospectively included from two medical centers. Multiphasic radiomics features were extracted from manually delineated volume of interest (VOI) of all lesions on each mpCECT phase. Representation learning based MCLFF model was built to fuse multiphasic features for MTM HCC prediction, and compared with competing models using other fusion methods. Conventional imaging features and clinical factors were also evaluated and analyzed. Prediction performance was validated by ROC analysis and statistical comparisons on an internal validation and an external testing dataset. Fusion of radiomics features from the arterial phase (AP) and portal venous phase (PAP) using MCLFF demonstrated superior performance in MTM HCC prediction, with a higher AUC of 0.857 compared with all competing models in the internal validation set. Integration of multiple radiological or clinical features further improved the overall performance, with the highest AUCs of 0.857 and 0.836 respectively achieved in the internal validation and external testing set. Multiphasic radiomics features of AP and PVP fused by the MCLFF have demonstrated substantial potential in the accurate prediction of MTM HCC. Clinical factors and Radiological features in mpCECT contribute incremental values to the developed MCLFF strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_5Y9X75完成签到,获得积分10
刚刚
刚刚
2秒前
Zora关注了科研通微信公众号
3秒前
3秒前
4秒前
我行我素完成签到 ,获得积分10
4秒前
背后的妙海完成签到,获得积分10
4秒前
zzzzz发布了新的文献求助10
5秒前
xyy发布了新的文献求助10
5秒前
16发布了新的文献求助20
5秒前
领导范儿应助小鹿采纳,获得10
6秒前
完美世界应助菲菲采纳,获得10
6秒前
6秒前
科目三应助Goodluck采纳,获得10
6秒前
6秒前
7秒前
清爽外套发布了新的文献求助10
8秒前
善良乐松发布了新的文献求助10
8秒前
dalian发布了新的文献求助10
8秒前
11秒前
乐乐发布了新的文献求助10
12秒前
12发布了新的文献求助10
12秒前
传奇3应助zzzzz采纳,获得10
13秒前
14秒前
神奇的光子发布了新的文献求助200
14秒前
深情安青应助司空豁采纳,获得10
14秒前
16秒前
Li完成签到,获得积分20
18秒前
18秒前
xyy完成签到,获得积分10
20秒前
22秒前
23秒前
鹿友菌发布了新的文献求助10
23秒前
酷炫依白发布了新的文献求助10
24秒前
wzc完成签到,获得积分20
25秒前
斯文败类应助陶醉山灵采纳,获得10
26秒前
林芟发布了新的文献求助10
26秒前
Hello应助Lucien采纳,获得10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
A Handbook of Process Tracing Methods : 2nd Edition 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3699390
求助须知:如何正确求助?哪些是违规求助? 3250045
关于积分的说明 9866657
捐赠科研通 2961832
什么是DOI,文献DOI怎么找? 1624267
邀请新用户注册赠送积分活动 769245
科研通“疑难数据库(出版商)”最低求助积分说明 742143