亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Application and Evaluation of the LMDI Method in Building Carbon Emissions Analysis: A Comprehensive Review

温室气体 环境科学 建筑工程 工程类 生态学 生物
作者
Yangluxi Li,Huishu Chen,Peijun Yu,Li Yang
出处
期刊:Buildings [Multidisciplinary Digital Publishing Institute]
卷期号:14 (9): 2820-2820 被引量:1
标识
DOI:10.3390/buildings14092820
摘要

The Logarithmic Mean Divisia Index (LMDI) method is widely applied in research on carbon emissions, urban energy consumption, and the building sector, and is useful for theoretical research and evaluation. The approach is especially beneficial for combating climate change and encouraging energy transitions. During the method’s development, there are opportunities to develop advanced formulas to improve the accuracy of studies, as indicated by past research, that have yet to be fully explored through experimentation. This study reviews previous research on the LMDI method in the context of building carbon emissions, offering a comprehensive overview of its application. It summarizes the technical foundations, applications, and evaluations of the LMDI method and analyzes the major research trends and common calculation methods used in the past 25 years in the LMDI-related field. Moreover, it reviews the use of the LMDI in the building sector, urban energy, and carbon emissions and discusses other methods, such as the Generalized Divisia Index Method (GDIM), Decision Making Trial and Evaluation Laboratory (DEMATEL), and Interpretive Structural Modeling (ISM) techniques. This study explores and compares the advantages and disadvantages of these methods and their use in the building sector to the LMDI. Finally, this paper concludes by highlighting future possibilities of the LMDI, suggesting how the LMDI can be integrated with other models for more comprehensive analysis. However, in current research, there is still a lack of an extensive study of the driving factors in low-carbon city development. The previous related studies often focused on single factors or specific domains without an interdisciplinary understanding of the interactions between factors. Moreover, traditional decomposition methods, such as the LMDI, face challenges in handling large-scale data and highly depend on data quality. Together with the estimation of kernel density and spatial correlation analysis, the enhanced LMDI method overcomes these drawbacks by offering a more comprehensive review of the drivers of energy usage and carbon emissions. Integrating machine learning and big data technologies can enhance data-processing capabilities and analytical accuracy, offering scientific policy recommendations and practical tools for low-carbon city development. Through particular case studies, this paper indicates the effectiveness of these approaches and proposes measures that include optimizing building design, enhancing energy efficiency, and refining energy-management procedures. These efforts aim to promote smart cities and achieve sustainable development goals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wuyuhan完成签到,获得积分20
3秒前
深情安青应助科研通管家采纳,获得10
4秒前
4秒前
9秒前
寒冷又菡完成签到 ,获得积分10
10秒前
11秒前
12秒前
17秒前
20秒前
23秒前
23秒前
27秒前
30秒前
31秒前
kakal完成签到,获得积分10
31秒前
33秒前
kakal发布了新的文献求助10
37秒前
英姑应助wop111采纳,获得10
37秒前
39秒前
44秒前
51秒前
54秒前
55秒前
1分钟前
烟花应助布丁仔采纳,获得10
1分钟前
汤汤完成签到 ,获得积分10
1分钟前
开坦克的贝塔完成签到,获得积分10
1分钟前
1分钟前
科研通AI5应助酥酥采纳,获得10
1分钟前
1分钟前
布丁仔发布了新的文献求助10
1分钟前
cc完成签到,获得积分10
1分钟前
定西发布了新的文献求助10
1分钟前
1分钟前
P1gy发布了新的文献求助20
1分钟前
无尘完成签到 ,获得积分0
1分钟前
羽心发布了新的文献求助10
1分钟前
湘玉给你溜肥肠完成签到 ,获得积分10
1分钟前
布丁仔完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935139
求助须知:如何正确求助?哪些是违规求助? 4202704
关于积分的说明 13058483
捐赠科研通 3977406
什么是DOI,文献DOI怎么找? 2179506
邀请新用户注册赠送积分活动 1195592
关于科研通互助平台的介绍 1107119