The Application and Evaluation of the LMDI Method in Building Carbon Emissions Analysis: A Comprehensive Review

温室气体 环境科学 建筑工程 工程类 生态学 生物
作者
Yangluxi Li,Huishu Chen,Peijun Yu,Li Yang
出处
期刊:Buildings [MDPI AG]
卷期号:14 (9): 2820-2820 被引量:1
标识
DOI:10.3390/buildings14092820
摘要

The Logarithmic Mean Divisia Index (LMDI) method is widely applied in research on carbon emissions, urban energy consumption, and the building sector, and is useful for theoretical research and evaluation. The approach is especially beneficial for combating climate change and encouraging energy transitions. During the method’s development, there are opportunities to develop advanced formulas to improve the accuracy of studies, as indicated by past research, that have yet to be fully explored through experimentation. This study reviews previous research on the LMDI method in the context of building carbon emissions, offering a comprehensive overview of its application. It summarizes the technical foundations, applications, and evaluations of the LMDI method and analyzes the major research trends and common calculation methods used in the past 25 years in the LMDI-related field. Moreover, it reviews the use of the LMDI in the building sector, urban energy, and carbon emissions and discusses other methods, such as the Generalized Divisia Index Method (GDIM), Decision Making Trial and Evaluation Laboratory (DEMATEL), and Interpretive Structural Modeling (ISM) techniques. This study explores and compares the advantages and disadvantages of these methods and their use in the building sector to the LMDI. Finally, this paper concludes by highlighting future possibilities of the LMDI, suggesting how the LMDI can be integrated with other models for more comprehensive analysis. However, in current research, there is still a lack of an extensive study of the driving factors in low-carbon city development. The previous related studies often focused on single factors or specific domains without an interdisciplinary understanding of the interactions between factors. Moreover, traditional decomposition methods, such as the LMDI, face challenges in handling large-scale data and highly depend on data quality. Together with the estimation of kernel density and spatial correlation analysis, the enhanced LMDI method overcomes these drawbacks by offering a more comprehensive review of the drivers of energy usage and carbon emissions. Integrating machine learning and big data technologies can enhance data-processing capabilities and analytical accuracy, offering scientific policy recommendations and practical tools for low-carbon city development. Through particular case studies, this paper indicates the effectiveness of these approaches and proposes measures that include optimizing building design, enhancing energy efficiency, and refining energy-management procedures. These efforts aim to promote smart cities and achieve sustainable development goals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈睿毅完成签到,获得积分10
1秒前
有个公子她姓李完成签到,获得积分10
2秒前
斯文败类应助江一山采纳,获得10
3秒前
上官若男应助Xieyusen采纳,获得10
4秒前
5秒前
5秒前
5秒前
EXCELSIOR发布了新的文献求助10
6秒前
烟花应助Galato采纳,获得10
6秒前
7秒前
科研通AI2S应助牛奶面包采纳,获得10
7秒前
金刚经发布了新的文献求助10
8秒前
9秒前
Joye发布了新的文献求助30
9秒前
啤酒白菜发布了新的文献求助10
9秒前
9秒前
张可发布了新的文献求助10
9秒前
10秒前
旱田蜗牛发布了新的文献求助10
10秒前
11秒前
13秒前
红柚发布了新的文献求助10
13秒前
13秒前
14秒前
16秒前
16秒前
HopeStar完成签到,获得积分10
17秒前
22222发布了新的文献求助10
17秒前
18秒前
缓慢靖易完成签到,获得积分10
19秒前
Galato发布了新的文献求助10
19秒前
20秒前
clyhg完成签到,获得积分10
20秒前
超级的路人完成签到,获得积分10
20秒前
20秒前
Luoyi完成签到 ,获得积分10
21秒前
21秒前
22秒前
啤酒白菜完成签到,获得积分10
23秒前
默存完成签到,获得积分10
23秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260503
求助须知:如何正确求助?哪些是违规求助? 2901672
关于积分的说明 8316639
捐赠科研通 2571234
什么是DOI,文献DOI怎么找? 1396914
科研通“疑难数据库(出版商)”最低求助积分说明 653598
邀请新用户注册赠送积分活动 632040