The Application and Evaluation of the LMDI Method in Building Carbon Emissions Analysis: A Comprehensive Review

温室气体 环境科学 建筑工程 工程类 生态学 生物
作者
Yangluxi Li,Huishu Chen,Peijun Yu,Li Yang
出处
期刊:Buildings [MDPI AG]
卷期号:14 (9): 2820-2820 被引量:1
标识
DOI:10.3390/buildings14092820
摘要

The Logarithmic Mean Divisia Index (LMDI) method is widely applied in research on carbon emissions, urban energy consumption, and the building sector, and is useful for theoretical research and evaluation. The approach is especially beneficial for combating climate change and encouraging energy transitions. During the method’s development, there are opportunities to develop advanced formulas to improve the accuracy of studies, as indicated by past research, that have yet to be fully explored through experimentation. This study reviews previous research on the LMDI method in the context of building carbon emissions, offering a comprehensive overview of its application. It summarizes the technical foundations, applications, and evaluations of the LMDI method and analyzes the major research trends and common calculation methods used in the past 25 years in the LMDI-related field. Moreover, it reviews the use of the LMDI in the building sector, urban energy, and carbon emissions and discusses other methods, such as the Generalized Divisia Index Method (GDIM), Decision Making Trial and Evaluation Laboratory (DEMATEL), and Interpretive Structural Modeling (ISM) techniques. This study explores and compares the advantages and disadvantages of these methods and their use in the building sector to the LMDI. Finally, this paper concludes by highlighting future possibilities of the LMDI, suggesting how the LMDI can be integrated with other models for more comprehensive analysis. However, in current research, there is still a lack of an extensive study of the driving factors in low-carbon city development. The previous related studies often focused on single factors or specific domains without an interdisciplinary understanding of the interactions between factors. Moreover, traditional decomposition methods, such as the LMDI, face challenges in handling large-scale data and highly depend on data quality. Together with the estimation of kernel density and spatial correlation analysis, the enhanced LMDI method overcomes these drawbacks by offering a more comprehensive review of the drivers of energy usage and carbon emissions. Integrating machine learning and big data technologies can enhance data-processing capabilities and analytical accuracy, offering scientific policy recommendations and practical tools for low-carbon city development. Through particular case studies, this paper indicates the effectiveness of these approaches and proposes measures that include optimizing building design, enhancing energy efficiency, and refining energy-management procedures. These efforts aim to promote smart cities and achieve sustainable development goals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助Chang采纳,获得10
1秒前
1秒前
1秒前
kk子完成签到,获得积分10
2秒前
夏橪发布了新的文献求助10
2秒前
JamesPei应助lunan采纳,获得10
3秒前
传奇3应助qing采纳,获得10
3秒前
卫尔摩斯完成签到,获得积分10
4秒前
4秒前
4秒前
沉默牛排发布了新的文献求助10
4秒前
科研通AI5应助独特微笑采纳,获得10
4秒前
5秒前
5秒前
碧玉墨绿完成签到,获得积分10
5秒前
xiaoma完成签到,获得积分10
5秒前
6秒前
潇洒的擎苍完成签到,获得积分10
6秒前
刘晓纳发布了新的文献求助10
6秒前
晴子发布了新的文献求助10
6秒前
洛鸢发布了新的文献求助10
7秒前
立马毕业完成签到,获得积分10
7秒前
卫尔摩斯发布了新的文献求助10
7秒前
BINBIN完成签到 ,获得积分10
7秒前
hfgeyt完成签到,获得积分10
8秒前
sakurai应助背后的诺言采纳,获得10
8秒前
湘华发布了新的文献求助10
9秒前
Jenny应助lan采纳,获得10
9秒前
单薄的飞松完成签到 ,获得积分10
9秒前
醒醒发布了新的文献求助10
9秒前
10秒前
恨安完成签到,获得积分10
10秒前
jijahui发布了新的文献求助30
10秒前
南瓜咸杏发布了新的文献求助30
10秒前
11秒前
调研昵称发布了新的文献求助50
11秒前
12秒前
白白不读书完成签到 ,获得积分10
12秒前
13秒前
AIA7发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762