Interior sound quality evaluation and forecasting of passenger vehicles based on hybrid optimization neural networks

人工神经网络 计算机科学 音质 声音(地理) 质量(理念) 工程类 人工智能 声学 语音识别 哲学 物理 认识论
作者
Kun Qian,Jing Tan,Zhenghua Shen,Ke Liu,Yanfu Wang,J. Duan,Xikang Du,Jian Zhao
出处
期刊:Journal of Vibration and Control [SAGE]
标识
DOI:10.1177/10775463241282049
摘要

The interior noise of vehicles directly affects the comfort of the occupants, necessitating precise evaluation and control. Existing research has focused on constructing mappings between objective parameters and subjective perceptions of noise, where back propagation neural networks (BPNNs) are widely used due to their strong nonlinear mapping capabilities. However, the selection of initial weights and thresholds can affect the predictive accuracy of BPNN. This study developed a BPNN model optimized by an intelligent algorithm for predicting the level of subjective annoyance of passengers during the movement. Initially, objective parameters of interior noise were obtained through acoustic signal processing techniques, and five parameters were selected for studying subjective annoyance through correlation analysis and two-tailed tests. Meanwhile, the actual subjective ratings of passengers on interior noise were captured for subsequent training of the model and testing of the results. Finally, the established sparrow search algorithm (SSA) and genetic algorithm (GA) optimized BPNN were used to predict subjective evaluations. The predictive accuracy and efficiency of the model were significantly improved upon validation, providing a viable alternative to traditional passenger vehicle noise assessment experiments and valuable references for future noise control and optimization efforts. The experimental results are consistent with the view that the neural network model optimized with a mixture of intelligent algorithms is closer to the passenger’s subjective annoyance level having higher accuracy and efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伯赏汝燕发布了新的文献求助10
刚刚
xx完成签到 ,获得积分10
1秒前
QY发布了新的文献求助30
1秒前
CodeCraft应助高1123采纳,获得10
2秒前
张三发布了新的文献求助10
2秒前
zengyangyu发布了新的文献求助10
3秒前
无情干饭崽完成签到,获得积分10
3秒前
彭于晏应助一方通行采纳,获得10
4秒前
朴实山兰完成签到,获得积分10
5秒前
ponny2001发布了新的文献求助10
5秒前
6秒前
脑洞疼应助回水采纳,获得10
6秒前
xuulanni发布了新的文献求助10
8秒前
shuai_cc发布了新的文献求助10
9秒前
123asd完成签到 ,获得积分10
9秒前
白学长应助正直凛采纳,获得10
10秒前
芝麻糊应助冷傲的白卉采纳,获得10
11秒前
北风歌发布了新的文献求助10
14秒前
14秒前
爱猫的纭发布了新的文献求助10
14秒前
15秒前
芝麻糊应助11采纳,获得10
16秒前
伯赏汝燕完成签到,获得积分10
17秒前
FashionBoy应助七七雨后采纳,获得10
17秒前
123完成签到,获得积分10
18秒前
19秒前
xu完成签到,获得积分10
19秒前
meini发布了新的文献求助10
21秒前
专注岚应助早昂采纳,获得10
21秒前
一方通行发布了新的文献求助10
23秒前
思源应助1111111采纳,获得10
24秒前
24秒前
24秒前
yy完成签到 ,获得积分10
25秒前
25秒前
25秒前
高球球发布了新的文献求助10
26秒前
27秒前
science发布了新的文献求助10
30秒前
xuulanni发布了新的文献求助10
30秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462526
求助须知:如何正确求助?哪些是违规求助? 3056054
关于积分的说明 9050624
捐赠科研通 2745705
什么是DOI,文献DOI怎么找? 1506521
科研通“疑难数据库(出版商)”最低求助积分说明 696165
邀请新用户注册赠送积分活动 695677