Errors of Opportunity: Using Neural Networks to Predict Errors in the Global Ensemble Forecast System (GEFS) on S2S Timescales

人工神经网络 计算机科学 集合预报 气象学 环境科学 气候学 机器学习 地理 地质学
作者
J. S. Cahill,Elizabeth A. Barnes,Eric D. Maloney,Stephan R. Sain,Patrick A. Harr,Luke Madaus
出处
期刊:Weather and Forecasting [American Meteorological Society]
标识
DOI:10.1175/waf-d-23-0125.1
摘要

Abstract Making predictions of impactful weather on timescales of weeks to months (subseasonal to seasonal; S2S) in advance is incredibly challenging. Dynamical models often struggle to simulate tropical systems that evolve over multiple weeks such as the Madden Julian Oscillation (MJO) and the Boreal Summer Intraseasonal Oscillation (BSISO), and these errors can impact geopotential heights, precipitation, and other variables in the continental United States through teleconnections. While many data-driven S2S studies attempt to predict future midlatitude variables using current conditions, here we instead focus on post-processing of the National Oceanic and Atmospheric Association’s (NOAA) Global Ensemble Forecast System (GEFS) to predict GEFS errors. Specifically, by looking at when/where there are errors in the GEFS, neural networks can be used to understand what atmospheric conditions helped produce these errors via explainability methods. Our ‘Errors of Opportunity’ approach identifies phase 4 of the MJO and phases 1 and 2 of the BSISO as significant factors in aiding GEFS error prediction across different regions and seasons. Specifically, we see high accuracy for overestimates of 500 hPa geopotential height (h500) anomalies in the Pacific Northwest during Spring and as well as high accuracy for underestimates of geopotential heights in Northwest Mexico during Summer. Furthermore, we demonstrate enhanced error prediction skill for overestimates of Summer precipitation in the Midwest following BSISO phases 1 and 2. Most notably, our findings highlight that the identified errors stem from the GEFS’s failure to accurately forecast teleconnection patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助张萌采纳,获得20
刚刚
刚刚
花鸟风月evereo完成签到,获得积分10
刚刚
田様应助yangling0124采纳,获得10
2秒前
乔治的恐龙完成签到 ,获得积分10
2秒前
cherish发布了新的文献求助10
3秒前
3秒前
Leo发布了新的文献求助10
3秒前
4秒前
螺旋起飞派大星完成签到,获得积分10
4秒前
6秒前
天天快乐应助研友_Z34DG8采纳,获得10
6秒前
于浩完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
Felice完成签到,获得积分10
9秒前
isabelwy发布了新的文献求助10
9秒前
seven发布了新的文献求助10
10秒前
李爱国应助123采纳,获得10
10秒前
NexusExplorer应助李明采纳,获得10
10秒前
科研dog完成签到,获得积分10
10秒前
nn发布了新的文献求助10
11秒前
聪明飞雪完成签到,获得积分20
11秒前
罗_应助我爱吃火锅采纳,获得30
11秒前
米兰发布了新的文献求助30
11秒前
11秒前
某某辣酱发布了新的文献求助10
12秒前
张萌发布了新的文献求助20
12秒前
12秒前
13秒前
可爱的函函应助Lm采纳,获得10
13秒前
MissZ发布了新的文献求助20
13秒前
充电宝应助早睡早起采纳,获得10
14秒前
15秒前
15秒前
15秒前
英姑应助小小林柒染采纳,获得10
15秒前
fossil完成签到,获得积分10
15秒前
没有银发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151531
求助须知:如何正确求助?哪些是违规求助? 2802910
关于积分的说明 7851162
捐赠科研通 2460322
什么是DOI,文献DOI怎么找? 1309707
科研通“疑难数据库(出版商)”最低求助积分说明 628997
版权声明 601760