Errors of Opportunity: Using Neural Networks to Predict Errors in the Global Ensemble Forecast System (GEFS) on S2S Timescales

人工神经网络 计算机科学 集合预报 气象学 环境科学 气候学 机器学习 地理 地质学
作者
J. S. Cahill,Elizabeth A. Barnes,Eric D. Maloney,Stephan R. Sain,Patrick A. Harr,Luke Madaus
出处
期刊:Weather and Forecasting [American Meteorological Society]
标识
DOI:10.1175/waf-d-23-0125.1
摘要

Abstract Making predictions of impactful weather on timescales of weeks to months (subseasonal to seasonal; S2S) in advance is incredibly challenging. Dynamical models often struggle to simulate tropical systems that evolve over multiple weeks such as the Madden Julian Oscillation (MJO) and the Boreal Summer Intraseasonal Oscillation (BSISO), and these errors can impact geopotential heights, precipitation, and other variables in the continental United States through teleconnections. While many data-driven S2S studies attempt to predict future midlatitude variables using current conditions, here we instead focus on post-processing of the National Oceanic and Atmospheric Association’s (NOAA) Global Ensemble Forecast System (GEFS) to predict GEFS errors. Specifically, by looking at when/where there are errors in the GEFS, neural networks can be used to understand what atmospheric conditions helped produce these errors via explainability methods. Our ‘Errors of Opportunity’ approach identifies phase 4 of the MJO and phases 1 and 2 of the BSISO as significant factors in aiding GEFS error prediction across different regions and seasons. Specifically, we see high accuracy for overestimates of 500 hPa geopotential height (h500) anomalies in the Pacific Northwest during Spring and as well as high accuracy for underestimates of geopotential heights in Northwest Mexico during Summer. Furthermore, we demonstrate enhanced error prediction skill for overestimates of Summer precipitation in the Midwest following BSISO phases 1 and 2. Most notably, our findings highlight that the identified errors stem from the GEFS’s failure to accurately forecast teleconnection patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观小之应助开朗依霜采纳,获得10
刚刚
李爱国应助开朗依霜采纳,获得30
刚刚
LWJ发布了新的文献求助10
1秒前
帅哥吴克发布了新的文献求助10
1秒前
zyyz完成签到,获得积分10
2秒前
2秒前
共享精神应助slow采纳,获得10
4秒前
???完成签到,获得积分10
4秒前
4秒前
故意的怜晴完成签到 ,获得积分10
4秒前
乐乐应助xr采纳,获得10
4秒前
6秒前
6秒前
dada发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
欢檬应助游一采纳,获得10
8秒前
完美世界应助白金之星采纳,获得10
8秒前
9秒前
美满的金连完成签到 ,获得积分10
10秒前
cnas发布了新的文献求助10
11秒前
SOO完成签到 ,获得积分10
11秒前
zxzx完成签到 ,获得积分20
11秒前
夏夜完成签到 ,获得积分10
12秒前
12秒前
xiao完成签到 ,获得积分10
12秒前
隐形曼青应助ddaizi采纳,获得10
12秒前
mayi完成签到,获得积分10
13秒前
憨憨发布了新的文献求助10
13秒前
14秒前
15秒前
dryyu完成签到,获得积分10
16秒前
还不错的橙子完成签到,获得积分10
16秒前
思源应助失眠的问梅采纳,获得10
17秒前
17秒前
香蕉觅云应助qwfwe采纳,获得10
18秒前
orixero应助朴实的映秋采纳,获得10
19秒前
螳螂腿子发布了新的文献求助10
20秒前
Rondab应助qq采纳,获得30
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992317
求助须知:如何正确求助?哪些是违规求助? 3533285
关于积分的说明 11261852
捐赠科研通 3272704
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882732
科研通“疑难数据库(出版商)”最低求助积分说明 809459