Errors of Opportunity: Using Neural Networks to Predict Errors in the Global Ensemble Forecast System (GEFS) on S2S Timescales

人工神经网络 计算机科学 集合预报 气象学 环境科学 气候学 机器学习 地理 地质学
作者
J. S. Cahill,Elizabeth A. Barnes,Eric D. Maloney,Stephan R. Sain,Patrick A. Harr,Luke Madaus
出处
期刊:Weather and Forecasting [American Meteorological Society]
标识
DOI:10.1175/waf-d-23-0125.1
摘要

Abstract Making predictions of impactful weather on timescales of weeks to months (subseasonal to seasonal; S2S) in advance is incredibly challenging. Dynamical models often struggle to simulate tropical systems that evolve over multiple weeks such as the Madden Julian Oscillation (MJO) and the Boreal Summer Intraseasonal Oscillation (BSISO), and these errors can impact geopotential heights, precipitation, and other variables in the continental United States through teleconnections. While many data-driven S2S studies attempt to predict future midlatitude variables using current conditions, here we instead focus on post-processing of the National Oceanic and Atmospheric Association’s (NOAA) Global Ensemble Forecast System (GEFS) to predict GEFS errors. Specifically, by looking at when/where there are errors in the GEFS, neural networks can be used to understand what atmospheric conditions helped produce these errors via explainability methods. Our ‘Errors of Opportunity’ approach identifies phase 4 of the MJO and phases 1 and 2 of the BSISO as significant factors in aiding GEFS error prediction across different regions and seasons. Specifically, we see high accuracy for overestimates of 500 hPa geopotential height (h500) anomalies in the Pacific Northwest during Spring and as well as high accuracy for underestimates of geopotential heights in Northwest Mexico during Summer. Furthermore, we demonstrate enhanced error prediction skill for overestimates of Summer precipitation in the Midwest following BSISO phases 1 and 2. Most notably, our findings highlight that the identified errors stem from the GEFS’s failure to accurately forecast teleconnection patterns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Auroratly发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
Tourist应助董是鑫采纳,获得10
刚刚
Apricity发布了新的文献求助10
1秒前
vergegung完成签到,获得积分10
1秒前
blur发布了新的文献求助10
1秒前
王冠发布了新的文献求助10
2秒前
zzzzzzz完成签到,获得积分20
2秒前
3秒前
3秒前
不安红豆发布了新的文献求助10
4秒前
4秒前
亮亮完成签到 ,获得积分10
4秒前
zzzZxp完成签到 ,获得积分10
5秒前
科研通AI6应助torjain采纳,获得10
5秒前
羊羽完成签到,获得积分10
6秒前
脑洞疼应助zuihaodewomen采纳,获得10
6秒前
pepe完成签到,获得积分10
6秒前
Doublemorning发布了新的文献求助10
7秒前
陈星珂发布了新的文献求助10
7秒前
乐乐应助halo采纳,获得10
7秒前
8秒前
9秒前
vanshaw.vs发布了新的文献求助10
9秒前
蓝天应助拼搏的寒珊采纳,获得10
9秒前
yy发布了新的文献求助10
10秒前
小黄完成签到 ,获得积分10
11秒前
deerchenlu完成签到,获得积分10
12秒前
陈旧发布了新的文献求助20
12秒前
13秒前
13秒前
动听初珍发布了新的文献求助10
14秒前
qiqi发布了新的文献求助10
14秒前
16秒前
李念发布了新的文献求助10
16秒前
碧蓝帆布鞋完成签到,获得积分10
16秒前
Apricity完成签到,获得积分20
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626820
求助须知:如何正确求助?哪些是违规求助? 4712727
关于积分的说明 14960335
捐赠科研通 4782760
什么是DOI,文献DOI怎么找? 2554542
邀请新用户注册赠送积分活动 1516181
关于科研通互助平台的介绍 1476457