Harnessing Electro-Descriptors for Mechanistic and Machine Learning Analysis of Photocatalytic Organic Reactions

化学 光催化 反应性(心理学) 氧化还原 产量(工程) 生物系统 基质(水族馆) 生化工程 组合化学 催化作用 有机化学 热力学 工程类 医学 物理 替代医学 海洋学 病理 生物 地质学
作者
Li Dai,Yulong Fu,Miaoyan Wei,Fangyuan Wang,Bailin Tian,Guoqiang Wang,Shuhua Li,Mengning Ding
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (28): 19019-19029
标识
DOI:10.1021/jacs.4c03085
摘要

Photocatalysis has emerged as an effective tool for addressing the contemporary challenges in organic synthesis. However, the trial-and-error-based screening of feasible substrates and optimal reaction conditions remains time-consuming and potentially expensive in industrial practice. Here, we demonstrate an electrochemical-based data-acquisition approach that derives a simple set of redox-relevant electro-descriptors for effective mechanistic analysis and performance evaluation through machine learning (ML) in photocatalytic synthesis. These electro-descriptors correlate to the quantification of shifted charge transfer processes in response to the photoirradiation and enabled construction of reactivity diagram where high-yield reactive "hot zones" can reflect subtle changes of the reaction system. For the model reaction of photocatalytic deoxygenation reaction, the influence of varying carboxylic acids (substrate A, oxidation-intended) and alkenes (substrate B, reduction-intended) and varying reaction conditions on the reaction yield can be visualized, while mathematical analysis of the electro-descriptor patterns further revealed distinct mechanistic/kinetic impacts from different substrates and conditions. Additionally, in the application of ML algorithms, the experimentally derived electro-descriptors reflect an overall redox kinetic outcome contributed from vast reaction parameters, serving as a capable means to reduce the dimensionality in the case of complex multiparameter chemical space. As a result, utilization of electro-descriptors enabled efficient and robust quantitative evaluation of chemical reactivity, demonstrating promising potential of introducing operando-relevant experimental insights in the data-driven chemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gaylord发布了新的文献求助30
刚刚
may发布了新的文献求助10
1秒前
子车茗应助sldelibra采纳,获得10
1秒前
Singularity应助三三四采纳,获得10
2秒前
氢气完成签到,获得积分20
3秒前
d西西完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
彳亍1117应助Ternura采纳,获得20
7秒前
氢气发布了新的文献求助30
8秒前
8秒前
小小发布了新的文献求助30
9秒前
哎呀我去发布了新的文献求助10
10秒前
11秒前
11秒前
FallWhit3发布了新的文献求助10
11秒前
12秒前
qian发布了新的文献求助10
12秒前
充电宝应助keke采纳,获得10
12秒前
gaylord完成签到,获得积分10
13秒前
上官若男应助Lll采纳,获得10
13秒前
13秒前
Singularity应助水合氯醛采纳,获得10
14秒前
玛璃鸶完成签到,获得积分10
14秒前
希望天下0贩的0应助zhang采纳,获得10
15秒前
15秒前
xmdcobra完成签到,获得积分10
15秒前
小小酥发布了新的文献求助10
15秒前
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
16秒前
彭于晏应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
浅尝离白应助科研通管家采纳,获得30
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
Fred Guan应助科研通管家采纳,获得10
16秒前
yangY完成签到,获得积分10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145621
求助须知:如何正确求助?哪些是违规求助? 2797097
关于积分的说明 7822848
捐赠科研通 2453435
什么是DOI,文献DOI怎么找? 1305652
科研通“疑难数据库(出版商)”最低求助积分说明 627514
版权声明 601469