材料科学
激光器
背景(考古学)
曲面(拓扑)
光学
非晶态金属
无定形固体
金属
氧化物
皮秒
光电子学
复合材料
冶金
结晶学
几何学
物理
化学
古生物学
数学
合金
生物
作者
Yue’e 月娥 Zhang 张,Xing 星 Tong 童,Yuqiang 玉强 Yan 闫,Shuo 硕 Cao 曹,Hai-Bo 海波 Ke 柯,Wei-Hua 卫华 Wang 汪
标识
DOI:10.1088/1674-1056/ad7672
摘要
Abstract The alteration in surface color of metallic glasses (MGs) holds great significance in the context of microstructure design and commercial utility. It is essential to accurately describe the structures that are formed during the laser and color separation processes in order to develop practical laser coloring applications. Due to the high oxidation sensitivity of La-based metallic glass, it can broaden the color range but make it more complex. Structure coloring by laser processing on the surface of La-based metallic glass can be conducted after thermoplastic forming. It is particularly important to clarify the role of structure and composition in the surface coloring process. The aim is to study the relationship between amorphous surface structural color, surface geometry, and oxide formation by laser processing in metallic glasses. The findings revealed that the periodic structure primarily determines the surface color at laser energy densities below 1.0 J/mm 2 . In contrast, the surface color predominantly depends on the proportion of oxides that are formed when energy densities exceed 1.0 J/mm 2 . Consequently, this study provides a novel concept for the fundamental investigation of laser coloring and establishes a new avenue for practical application.
科研通智能强力驱动
Strongly Powered by AbleSci AI