Language-Aware Vision Transformer for Referring Segmentation

计算机科学 人工智能 计算机视觉 分割 图像分割 自然语言处理 变压器 机器视觉 模式识别(心理学) 工程类 电压 电气工程
作者
Zhao Yang,Jiaqi Wang,Xubing Ye,Yansong Tang,Kai Chen,Hengshuang Zhao,Philip H. S. Torr
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (7): 5238-5255 被引量:5
标识
DOI:10.1109/tpami.2024.3468640
摘要

Referring segmentation is a fundamental vision-language task that aims to segment out an object from an image or video in accordance with a natural language description. One of the key challenges behind this task is leveraging the referring expression for highlighting relevant positions in the image or video frames. A paradigm for tackling this problem in both the image and the video domains is to leverage a powerful vision-language ("cross-modal") decoder to fuse features independently extracted from a vision encoder and a language encoder. Recent methods have made remarkable advances in this paradigm by exploiting Transformers as cross-modal decoders, concurrent to the Transformer's overwhelming success in many other vision-language tasks. Adopting a different approach in this work, we show that significantly better cross-modal alignments can be achieved through the early fusion of linguistic and visual features in intermediate layers of a vision Transformer encoder network. Based on the idea of conducting cross-modal feature fusion in the visual feature encoding stage, we propose a unified framework named Language-Aware Vision Transformer (LAVT), which leverages the well-proven correlation modeling power of a Transformer encoder for excavating helpful multi-modal context. This way, accurate segmentation results can be harvested with a light-weight mask predictor. One of the key components in the proposed system is a dense attention mechanism for collecting pixel-specific linguistic cues. When dealing with video inputs, we present the video LAVT framework and design a 3D version of this component by introducing multi-scale convolutional operators arranged in a parallel fashion, which can exploit spatio-temporal dependencies at different granularity levels. We further introduce unified LAVT as a unified framework that could handle both image and video inputs with enhanced segmentation capability on unified referring segmentation task. Our methods surpass previous state-of-the-art methods on seven benchmarks for referring image segmentation and referring video segmentation. The code to reproduce our experiments is available at LAVT-RS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗡嗡嗡发布了新的文献求助30
刚刚
量子星尘发布了新的文献求助30
1秒前
zzzzz完成签到,获得积分10
1秒前
忧郁醉薇发布了新的文献求助10
1秒前
迷人听白完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
笨笨百招完成签到,获得积分10
3秒前
357发布了新的文献求助10
4秒前
pgojpogk发布了新的文献求助30
4秒前
5秒前
5秒前
5秒前
橘桃发布了新的文献求助10
5秒前
Susie大可完成签到,获得积分10
6秒前
6秒前
Owen应助烦烦烦采纳,获得10
6秒前
科研小白发布了新的文献求助30
7秒前
7秒前
澄桦发布了新的文献求助10
7秒前
Takagi完成签到,获得积分10
7秒前
无情的猫粮发放机完成签到,获得积分10
8秒前
M1stake发布了新的文献求助10
8秒前
李爱国应助abc123采纳,获得10
8秒前
Eurpides发布了新的文献求助10
9秒前
9秒前
10秒前
enchyu发布了新的文献求助10
10秒前
斯文败类应助忧郁醉薇采纳,获得10
10秒前
薄荷发布了新的文献求助10
11秒前
橘桃完成签到,获得积分20
11秒前
哈哈哈完成签到,获得积分10
12秒前
冷傲又菡发布了新的文献求助10
12秒前
科目三应助师专第一黑奴采纳,获得10
12秒前
susuaini发布了新的文献求助10
13秒前
YVO4完成签到 ,获得积分10
14秒前
本喵才不会喵呢完成签到,获得积分10
14秒前
登登完成签到,获得积分10
14秒前
思源应助jaum采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718086
求助须知:如何正确求助?哪些是违规求助? 5250429
关于积分的说明 15284546
捐赠科研通 4868357
什么是DOI,文献DOI怎么找? 2614122
邀请新用户注册赠送积分活动 1564011
关于科研通互助平台的介绍 1521455