Language-Aware Vision Transformer for Referring Segmentation

计算机科学 人工智能 计算机视觉 分割 图像分割 自然语言处理 变压器 机器视觉 模式识别(心理学) 工程类 电气工程 电压
作者
Zhao Yang,Jiaqi Wang,Xubing Ye,Yansong Tang,Kai Chen,Hengshuang Zhao,Philip H. S. Torr
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-18
标识
DOI:10.1109/tpami.2024.3468640
摘要

Referring segmentation is a fundamental vision-language task that aims to segment out an object from an image or video in accordance with a natural language description. One of the key challenges behind this task is leveraging the referring expression for highlighting relevant positions in the image or video frames. A paradigm for tackling this problem in both the image and the video domains is to leverage a powerful vision-language ("cross-modal") decoder to fuse features independently extracted from a vision encoder and a language encoder. Recent methods have made remarkable advances in this paradigm by exploiting Transformers as cross-modal decoders, concurrent to the Transformer's overwhelming success in many other vision-language tasks. Adopting a different approach in this work, we show that significantly better cross-modal alignments can be achieved through the early fusion of linguistic and visual features in intermediate layers of a vision Transformer encoder network. Based on the idea of conducting cross-modal feature fusion in the visual feature encoding stage, we propose a unified framework named Language-Aware Vision Transformer (LAVT), which leverages the well-proven correlation modeling power of a Transformer encoder for excavating helpful multi-modal context. This way, accurate segmentation results can be harvested with a light-weight mask predictor. One of the key components in the proposed system is a dense attention mechanism for collecting pixel-specific linguistic cues. When dealing with video inputs, we present the video LAVT framework and design a 3D version of this component by introducing multi-scale convolutional operators arranged in a parallel fashion, which can exploit spatio-temporal dependencies at different granularity levels. We further introduce unified LAVT as a unified framework capable of handling both image and video inputs, with enhanced segmentation capabilities for the unified referring segmentation task. Our methods surpass previous state-of-the-art methods on seven benchmarks for referring image segmentation and referring video segmentation. The code to reproduce our experiments is available at LAVT-RS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ggbond完成签到 ,获得积分10
刚刚
刚刚
1秒前
林乐乐发布了新的文献求助10
1秒前
利威尔发布了新的文献求助10
2秒前
Acadia发布了新的文献求助10
2秒前
2秒前
2秒前
怡然夏菡完成签到,获得积分10
2秒前
3秒前
HLT发布了新的文献求助10
3秒前
3秒前
张小慢发布了新的文献求助10
3秒前
广州东站完成签到,获得积分10
3秒前
HS6完成签到,获得积分10
4秒前
一一完成签到,获得积分10
4秒前
vickymr完成签到,获得积分10
4秒前
4秒前
LYK2997499077完成签到,获得积分10
4秒前
5秒前
5秒前
大气乌冬面完成签到 ,获得积分0
5秒前
彭冬华完成签到 ,获得积分10
5秒前
dcx完成签到,获得积分10
5秒前
江随烨完成签到,获得积分10
6秒前
董凡侨完成签到,获得积分20
6秒前
mryun完成签到,获得积分10
6秒前
赵玉珊发布了新的文献求助10
6秒前
ZBH发布了新的文献求助10
6秒前
搜集达人应助咕噜噜采纳,获得10
6秒前
7秒前
无奈凡波应助来不及丨采纳,获得10
7秒前
一枚研究僧完成签到,获得积分0
8秒前
8秒前
疯了半天完成签到,获得积分10
8秒前
勤劳雁应助科研通管家采纳,获得10
8秒前
充电宝应助snowman采纳,获得10
8秒前
坦率的匪应助科研通管家采纳,获得20
8秒前
冰封火种发布了新的文献求助30
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614925
求助须知:如何正确求助?哪些是违规求助? 4018912
关于积分的说明 12440362
捐赠科研通 3701783
什么是DOI,文献DOI怎么找? 2041353
邀请新用户注册赠送积分活动 1074080
科研通“疑难数据库(出版商)”最低求助积分说明 957723