Language-Aware Vision Transformer for Referring Segmentation

计算机科学 人工智能 计算机视觉 分割 图像分割 自然语言处理 变压器 机器视觉 模式识别(心理学) 工程类 电压 电气工程
作者
Zhao Yang,Jiaqi Wang,Xubing Ye,Yansong Tang,Kai Chen,Hengshuang Zhao,Philip H. S. Torr
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18
标识
DOI:10.1109/tpami.2024.3468640
摘要

Referring segmentation is a fundamental vision-language task that aims to segment out an object from an image or video in accordance with a natural language description. One of the key challenges behind this task is leveraging the referring expression for highlighting relevant positions in the image or video frames. A paradigm for tackling this problem in both the image and the video domains is to leverage a powerful vision-language ("cross-modal") decoder to fuse features independently extracted from a vision encoder and a language encoder. Recent methods have made remarkable advances in this paradigm by exploiting Transformers as cross-modal decoders, concurrent to the Transformer's overwhelming success in many other vision-language tasks. Adopting a different approach in this work, we show that significantly better cross-modal alignments can be achieved through the early fusion of linguistic and visual features in intermediate layers of a vision Transformer encoder network. Based on the idea of conducting cross-modal feature fusion in the visual feature encoding stage, we propose a unified framework named Language-Aware Vision Transformer (LAVT), which leverages the well-proven correlation modeling power of a Transformer encoder for excavating helpful multi-modal context. This way, accurate segmentation results can be harvested with a light-weight mask predictor. One of the key components in the proposed system is a dense attention mechanism for collecting pixel-specific linguistic cues. When dealing with video inputs, we present the video LAVT framework and design a 3D version of this component by introducing multi-scale convolutional operators arranged in a parallel fashion, which can exploit spatio-temporal dependencies at different granularity levels. We further introduce unified LAVT as a unified framework capable of handling both image and video inputs, with enhanced segmentation capabilities for the unified referring segmentation task. Our methods surpass previous state-of-the-art methods on seven benchmarks for referring image segmentation and referring video segmentation. The code to reproduce our experiments is available at LAVT-RS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
牧妙芹发布了新的文献求助30
3秒前
3秒前
wxiao完成签到,获得积分10
3秒前
科研通AI2S应助89采纳,获得10
3秒前
英俊的铭应助仇书竹采纳,获得10
3秒前
来杯牛奶完成签到,获得积分10
3秒前
4秒前
苗条鱼完成签到,获得积分10
4秒前
cici完成签到,获得积分10
5秒前
贪玩路灯完成签到,获得积分10
6秒前
zpz完成签到,获得积分10
6秒前
CJ完成签到,获得积分20
7秒前
李亚静完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
Teragous完成签到,获得积分10
8秒前
8秒前
安某完成签到,获得积分10
8秒前
寇博翔发布了新的文献求助10
9秒前
李爱国应助zhangzhang采纳,获得10
10秒前
10秒前
mm发布了新的文献求助10
10秒前
薛定谔的猫完成签到,获得积分10
10秒前
小王同学完成签到,获得积分10
11秒前
王娜发布了新的文献求助10
11秒前
11秒前
12秒前
zjc发布了新的文献求助10
12秒前
小凯锅发布了新的文献求助10
13秒前
13秒前
13秒前
儒雅的夏翠完成签到,获得积分10
13秒前
yangyangyang完成签到,获得积分0
13秒前
13秒前
Esther发布了新的文献求助10
14秒前
仇书竹完成签到,获得积分10
14秒前
浅呀呀呀发布了新的文献求助10
14秒前
先锋发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5317139
求助须知:如何正确求助?哪些是违规求助? 4459587
关于积分的说明 13875850
捐赠科研通 4349563
什么是DOI,文献DOI怎么找? 2388945
邀请新用户注册赠送积分活动 1383134
关于科研通互助平台的介绍 1352384