Language-Aware Vision Transformer for Referring Segmentation

计算机科学 人工智能 计算机视觉 分割 图像分割 自然语言处理 变压器 机器视觉 模式识别(心理学) 工程类 电气工程 电压
作者
Zhao Yang,Jiaqi Wang,Xubing Ye,Yansong Tang,Kai Chen,Hengshuang Zhao,Philip H. S. Torr
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (7): 5238-5255 被引量:5
标识
DOI:10.1109/tpami.2024.3468640
摘要

Referring segmentation is a fundamental vision-language task that aims to segment out an object from an image or video in accordance with a natural language description. One of the key challenges behind this task is leveraging the referring expression for highlighting relevant positions in the image or video frames. A paradigm for tackling this problem in both the image and the video domains is to leverage a powerful vision-language ("cross-modal") decoder to fuse features independently extracted from a vision encoder and a language encoder. Recent methods have made remarkable advances in this paradigm by exploiting Transformers as cross-modal decoders, concurrent to the Transformer's overwhelming success in many other vision-language tasks. Adopting a different approach in this work, we show that significantly better cross-modal alignments can be achieved through the early fusion of linguistic and visual features in intermediate layers of a vision Transformer encoder network. Based on the idea of conducting cross-modal feature fusion in the visual feature encoding stage, we propose a unified framework named Language-Aware Vision Transformer (LAVT), which leverages the well-proven correlation modeling power of a Transformer encoder for excavating helpful multi-modal context. This way, accurate segmentation results can be harvested with a light-weight mask predictor. One of the key components in the proposed system is a dense attention mechanism for collecting pixel-specific linguistic cues. When dealing with video inputs, we present the video LAVT framework and design a 3D version of this component by introducing multi-scale convolutional operators arranged in a parallel fashion, which can exploit spatio-temporal dependencies at different granularity levels. We further introduce unified LAVT as a unified framework that could handle both image and video inputs with enhanced segmentation capability on unified referring segmentation task. Our methods surpass previous state-of-the-art methods on seven benchmarks for referring image segmentation and referring video segmentation. The code to reproduce our experiments is available at LAVT-RS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自闭中完成签到,获得积分10
刚刚
蝰蛇完成签到,获得积分10
1秒前
无花果应助疯狂的凝丹采纳,获得30
1秒前
1秒前
bpl完成签到,获得积分10
2秒前
hhh完成签到,获得积分10
2秒前
贴贴发布了新的文献求助10
2秒前
ccyy发布了新的文献求助10
2秒前
青青河边草完成签到,获得积分20
3秒前
魏一刀发布了新的文献求助10
3秒前
敏感的曼香完成签到,获得积分10
3秒前
zeng完成签到,获得积分10
4秒前
kk完成签到,获得积分10
4秒前
XIAOPI完成签到 ,获得积分10
5秒前
wohohoho完成签到,获得积分10
5秒前
可爱的玉米肠完成签到 ,获得积分10
6秒前
尚欣雨完成签到,获得积分10
7秒前
ningning完成签到 ,获得积分10
7秒前
默默新波完成签到 ,获得积分10
7秒前
Bihhh完成签到,获得积分10
8秒前
酷炫的天问完成签到,获得积分10
8秒前
斯文败类应助魏一刀采纳,获得10
9秒前
9秒前
9秒前
幽默囧完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
皛宁完成签到,获得积分10
13秒前
CipherSage应助WANGJD采纳,获得10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
Gaoge发布了新的文献求助10
14秒前
XIAOPI发布了新的文献求助10
15秒前
15秒前
ulung完成签到 ,获得积分10
15秒前
cccf发布了新的文献求助10
16秒前
皇家咖啡完成签到 ,获得积分10
16秒前
茉莉猫哟完成签到,获得积分10
17秒前
思源应助Chou采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429055
求助须知:如何正确求助?哪些是违规求助? 4542625
关于积分的说明 14181735
捐赠科研通 4460343
什么是DOI,文献DOI怎么找? 2445678
邀请新用户注册赠送积分活动 1436859
关于科研通互助平台的介绍 1414080