Language-Aware Vision Transformer for Referring Segmentation

计算机科学 人工智能 计算机视觉 分割 图像分割 自然语言处理 变压器 机器视觉 模式识别(心理学) 工程类 电压 电气工程
作者
Zhao Yang,Jiaqi Wang,Xubing Ye,Yansong Tang,Kai Chen,Hengshuang Zhao,Philip H. S. Torr
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18
标识
DOI:10.1109/tpami.2024.3468640
摘要

Referring segmentation is a fundamental vision-language task that aims to segment out an object from an image or video in accordance with a natural language description. One of the key challenges behind this task is leveraging the referring expression for highlighting relevant positions in the image or video frames. A paradigm for tackling this problem in both the image and the video domains is to leverage a powerful vision-language ("cross-modal") decoder to fuse features independently extracted from a vision encoder and a language encoder. Recent methods have made remarkable advances in this paradigm by exploiting Transformers as cross-modal decoders, concurrent to the Transformer's overwhelming success in many other vision-language tasks. Adopting a different approach in this work, we show that significantly better cross-modal alignments can be achieved through the early fusion of linguistic and visual features in intermediate layers of a vision Transformer encoder network. Based on the idea of conducting cross-modal feature fusion in the visual feature encoding stage, we propose a unified framework named Language-Aware Vision Transformer (LAVT), which leverages the well-proven correlation modeling power of a Transformer encoder for excavating helpful multi-modal context. This way, accurate segmentation results can be harvested with a light-weight mask predictor. One of the key components in the proposed system is a dense attention mechanism for collecting pixel-specific linguistic cues. When dealing with video inputs, we present the video LAVT framework and design a 3D version of this component by introducing multi-scale convolutional operators arranged in a parallel fashion, which can exploit spatio-temporal dependencies at different granularity levels. We further introduce unified LAVT as a unified framework capable of handling both image and video inputs, with enhanced segmentation capabilities for the unified referring segmentation task. Our methods surpass previous state-of-the-art methods on seven benchmarks for referring image segmentation and referring video segmentation. The code to reproduce our experiments is available at LAVT-RS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TT完成签到,获得积分10
1秒前
reck发布了新的文献求助10
1秒前
2秒前
DK发布了新的文献求助10
2秒前
英俊的铭应助ren采纳,获得10
2秒前
圈圈发布了新的文献求助10
2秒前
乐乱完成签到 ,获得积分10
3秒前
415484112完成签到,获得积分10
4秒前
yinyi发布了新的文献求助10
4秒前
4秒前
赵一丁完成签到,获得积分10
5秒前
成就绮琴完成签到 ,获得积分10
5秒前
Chen完成签到,获得积分10
5秒前
huanfid完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
Stitch完成签到 ,获得积分10
6秒前
6秒前
眯眯眼的冷珍完成签到,获得积分10
6秒前
bjyx完成签到,获得积分10
6秒前
reck完成签到,获得积分10
7秒前
pharmstudent发布了新的文献求助30
7秒前
小田完成签到,获得积分10
7秒前
小喵发布了新的文献求助10
8秒前
FashionBoy应助毛毛哦啊采纳,获得10
8秒前
Lucas应助Chen采纳,获得10
9秒前
强健的蚂蚁完成签到,获得积分20
9秒前
小宇发布了新的文献求助10
9秒前
斜杠武完成签到,获得积分20
9秒前
10秒前
伞兵龙发布了新的文献求助10
10秒前
RC_Wang应助科研小民工采纳,获得10
10秒前
sanben完成签到,获得积分10
10秒前
10秒前
_蝴蝶小姐完成签到,获得积分10
11秒前
诗轩发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672