Language-Aware Vision Transformer for Referring Segmentation

计算机科学 人工智能 计算机视觉 分割 图像分割 自然语言处理 变压器 机器视觉 模式识别(心理学) 工程类 电压 电气工程
作者
Zhao Yang,Jiaqi Wang,Xubing Ye,Yansong Tang,Kai Chen,Hengshuang Zhao,Philip H. S. Torr
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (7): 5238-5255 被引量:5
标识
DOI:10.1109/tpami.2024.3468640
摘要

Referring segmentation is a fundamental vision-language task that aims to segment out an object from an image or video in accordance with a natural language description. One of the key challenges behind this task is leveraging the referring expression for highlighting relevant positions in the image or video frames. A paradigm for tackling this problem in both the image and the video domains is to leverage a powerful vision-language ("cross-modal") decoder to fuse features independently extracted from a vision encoder and a language encoder. Recent methods have made remarkable advances in this paradigm by exploiting Transformers as cross-modal decoders, concurrent to the Transformer's overwhelming success in many other vision-language tasks. Adopting a different approach in this work, we show that significantly better cross-modal alignments can be achieved through the early fusion of linguistic and visual features in intermediate layers of a vision Transformer encoder network. Based on the idea of conducting cross-modal feature fusion in the visual feature encoding stage, we propose a unified framework named Language-Aware Vision Transformer (LAVT), which leverages the well-proven correlation modeling power of a Transformer encoder for excavating helpful multi-modal context. This way, accurate segmentation results can be harvested with a light-weight mask predictor. One of the key components in the proposed system is a dense attention mechanism for collecting pixel-specific linguistic cues. When dealing with video inputs, we present the video LAVT framework and design a 3D version of this component by introducing multi-scale convolutional operators arranged in a parallel fashion, which can exploit spatio-temporal dependencies at different granularity levels. We further introduce unified LAVT as a unified framework that could handle both image and video inputs with enhanced segmentation capability on unified referring segmentation task. Our methods surpass previous state-of-the-art methods on seven benchmarks for referring image segmentation and referring video segmentation. The code to reproduce our experiments is available at LAVT-RS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛斯特尔发布了新的文献求助10
刚刚
1秒前
显隐发布了新的文献求助10
2秒前
2秒前
2秒前
兜有米完成签到,获得积分10
2秒前
Owen应助猪肉超人菜婴蚊采纳,获得10
3秒前
研友_VZG7GZ应助冷酷海安采纳,获得10
4秒前
会飞的鱼发布了新的文献求助10
4秒前
晚风将近发布了新的文献求助10
4秒前
斯文小白菜完成签到 ,获得积分10
4秒前
李爱国应助寒树采纳,获得10
4秒前
ding应助坚强的笑天采纳,获得10
4秒前
5秒前
wangbq完成签到 ,获得积分10
5秒前
共享精神应助小刘同学采纳,获得10
6秒前
王尧完成签到,获得积分10
6秒前
zrz完成签到,获得积分10
7秒前
7秒前
嬴渠梁发布了新的文献求助30
7秒前
7秒前
NexusExplorer应助糟糕的访梦采纳,获得10
7秒前
dawn完成签到,获得积分10
7秒前
8秒前
大大大发布了新的文献求助10
8秒前
风之圣痕完成签到,获得积分10
8秒前
王尧发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
执着的玉米完成签到,获得积分20
11秒前
意羡完成签到,获得积分10
12秒前
小蘑菇应助兔宝宝采纳,获得10
12秒前
12秒前
12秒前
12秒前
大大大完成签到,获得积分10
13秒前
15秒前
15秒前
15秒前
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742911
求助须知:如何正确求助?哪些是违规求助? 5411336
关于积分的说明 15346296
捐赠科研通 4883960
什么是DOI,文献DOI怎么找? 2625453
邀请新用户注册赠送积分活动 1574294
关于科研通互助平台的介绍 1531234