Language-Aware Vision Transformer for Referring Segmentation

计算机科学 人工智能 计算机视觉 分割 图像分割 自然语言处理 变压器 机器视觉 模式识别(心理学) 工程类 电压 电气工程
作者
Zhao Yang,Jiaqi Wang,Xubing Ye,Yansong Tang,Kai Chen,Hengshuang Zhao,Philip H. S. Torr
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18
标识
DOI:10.1109/tpami.2024.3468640
摘要

Referring segmentation is a fundamental vision-language task that aims to segment out an object from an image or video in accordance with a natural language description. One of the key challenges behind this task is leveraging the referring expression for highlighting relevant positions in the image or video frames. A paradigm for tackling this problem in both the image and the video domains is to leverage a powerful vision-language ("cross-modal") decoder to fuse features independently extracted from a vision encoder and a language encoder. Recent methods have made remarkable advances in this paradigm by exploiting Transformers as cross-modal decoders, concurrent to the Transformer's overwhelming success in many other vision-language tasks. Adopting a different approach in this work, we show that significantly better cross-modal alignments can be achieved through the early fusion of linguistic and visual features in intermediate layers of a vision Transformer encoder network. Based on the idea of conducting cross-modal feature fusion in the visual feature encoding stage, we propose a unified framework named Language-Aware Vision Transformer (LAVT), which leverages the well-proven correlation modeling power of a Transformer encoder for excavating helpful multi-modal context. This way, accurate segmentation results can be harvested with a light-weight mask predictor. One of the key components in the proposed system is a dense attention mechanism for collecting pixel-specific linguistic cues. When dealing with video inputs, we present the video LAVT framework and design a 3D version of this component by introducing multi-scale convolutional operators arranged in a parallel fashion, which can exploit spatio-temporal dependencies at different granularity levels. We further introduce unified LAVT as a unified framework capable of handling both image and video inputs, with enhanced segmentation capabilities for the unified referring segmentation task. Our methods surpass previous state-of-the-art methods on seven benchmarks for referring image segmentation and referring video segmentation. The code to reproduce our experiments is available at LAVT-RS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疯狂的青亦完成签到,获得积分10
刚刚
打工研狗完成签到 ,获得积分10
刚刚
aprilvanilla应助Jodie采纳,获得10
刚刚
Jasper应助Jodie采纳,获得10
刚刚
识途发布了新的文献求助10
刚刚
活力凡雁完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
天天快乐应助芝芝采纳,获得10
2秒前
Lucas应助Devoted采纳,获得10
2秒前
星辰大海应助XXX采纳,获得10
2秒前
ylz关注了科研通微信公众号
2秒前
3秒前
3秒前
专注的树发布了新的文献求助10
3秒前
烽烽烽完成签到,获得积分10
4秒前
~峰发布了新的文献求助10
4秒前
XQ发布了新的文献求助10
4秒前
树袋发布了新的文献求助10
5秒前
5秒前
斯文听白发布了新的文献求助10
6秒前
iia发布了新的文献求助10
6秒前
Singularity应助魔幻小蚂蚁采纳,获得10
6秒前
6秒前
小静爱吃素完成签到,获得积分10
7秒前
1234567发布了新的文献求助10
7秒前
7秒前
神勇青枫发布了新的文献求助10
7秒前
7秒前
莉莉完成签到,获得积分10
9秒前
ttt发布了新的文献求助10
9秒前
9秒前
温暖天与发布了新的文献求助10
10秒前
10秒前
研友_VZG7GZ应助~峰采纳,获得10
10秒前
XQ完成签到,获得积分10
10秒前
Devoted完成签到,获得积分10
11秒前
11秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259004
求助须知:如何正确求助?哪些是违规求助? 2900665
关于积分的说明 8312000
捐赠科研通 2570002
什么是DOI,文献DOI怎么找? 1396091
科研通“疑难数据库(出版商)”最低求助积分说明 653435
邀请新用户注册赠送积分活动 631364