Physics-informed dual-objective optimization of high-entropy-alloy nanozymes by a robotic AI chemist

化学家 对偶(语法数字) 合金 双重目的 计算机科学 纳米技术 工程类 化学 材料科学 机械工程 哲学 冶金 语言学 有机化学
作者
Man Luo,Zikai Xie,Huirong Li,Baicheng Zhang,Jiaqi Cao,Yan Huang,Qing Zhu,Linjiang Chen,Jun Jiang,Yi Luo
标识
DOI:10.26434/chemrxiv-2024-mbk38
摘要

Engineering artificial nanozymes as substitutes for natural enzymes presents a significant scientific challenge. High entropy alloys (HEAs) have emerged as promising candidates for mimicking peroxidase (POD) activity thanks to their unique properties and versatility. However, designing or discovering HEAs that surpass the catalytic efficiency of natural horseradish peroxidase involves complex challenges, often hindered by the multidimensional nature of HEAs’ compositional variability and the intricate interplay of enzymatic behaviours. Therefore, an intelligent and efficient approach to accelerate this discovery is crucial. In this study, we address these challenges by deploying a robotic artificial-intelligence chemist equipped with theoretical calculations, machine learning, Bayesian optimization, and on-the-fly data analysis by a large language model (LLM). Our approach centres on a physics-informed, multi-objective optimization framework that simultaneously optimizes multiple desirable properties of nanozymes, including maximum reaction rate and substrate affinity, ultimately optimizing catalytic efficiency. By integrating an auxiliary knowledge model based on physical insights and collaborative decision-making enabled by LLM-in-the-loop into Bayesian optimization, we enhanced the data-driven discovery workflow. Our physics-informed approach, with instant LLM-in-the-loop feedback, significantly outperformed both random sampling and standard Bayesian optimization. Consequently, we efficiently explored a vast chemical space and identified HEAs with enzymatic properties that significantly exceed those of the most effective catalysts based on HEAs or single atoms reported in the literature, as well as the natural enzyme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
本真发布了新的文献求助10
刚刚
复杂数据线完成签到,获得积分10
1秒前
1秒前
打打应助科研通管家采纳,获得10
2秒前
shinysparrow应助科研通管家采纳,获得30
2秒前
赘婿应助科研通管家采纳,获得20
2秒前
shinysparrow应助科研通管家采纳,获得10
2秒前
shinysparrow应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
3秒前
ding应助满意若烟采纳,获得30
3秒前
3秒前
所所应助pengwb采纳,获得10
5秒前
peekaboo完成签到,获得积分10
5秒前
5秒前
felix发布了新的文献求助10
6秒前
7秒前
kitsuki完成签到,获得积分10
7秒前
8秒前
十月发布了新的文献求助10
9秒前
9秒前
10秒前
清秀浩宇发布了新的文献求助10
15秒前
Xiang发布了新的文献求助10
16秒前
烟花应助进退须臾采纳,获得10
18秒前
18秒前
无语的宛海完成签到,获得积分10
20秒前
cccsp发布了新的文献求助30
23秒前
bk201完成签到 ,获得积分10
23秒前
带虾的烧麦完成签到,获得积分10
23秒前
26秒前
洁净的天思完成签到,获得积分10
28秒前
中科路2020完成签到,获得积分10
29秒前
泽朴完成签到,获得积分10
29秒前
寡寡发布了新的文献求助10
31秒前
33秒前
本真完成签到,获得积分20
35秒前
冰兢完成签到,获得积分10
36秒前
进退须臾发布了新的文献求助10
37秒前
42秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3657151
求助须知:如何正确求助?哪些是违规求助? 3219488
关于积分的说明 9730943
捐赠科研通 2928158
什么是DOI,文献DOI怎么找? 1603512
邀请新用户注册赠送积分活动 756491
科研通“疑难数据库(出版商)”最低求助积分说明 733935