区域选择性
化学
人参皂甙
分子动力学
立体化学
生物化学
计算生物学
生物
计算化学
人参
催化作用
医学
替代医学
病理
作者
Yi Li,Hong-Qian Peng,Meng‐Liang Wen,Li-Quan Yang
出处
期刊:Molecules
[MDPI AG]
日期:2024-07-31
卷期号:29 (15): 3614-3614
标识
DOI:10.3390/molecules29153614
摘要
Identifying the catalytic regioselectivity of enzymes remains a challenge. Compared to experimental trial-and-error approaches, computational methods like molecular dynamics simulations provide valuable insights into enzyme characteristics. However, the massive data generated by these simulations hinder the extraction of knowledge about enzyme catalytic mechanisms without adequate modeling techniques. Here, we propose a computational framework utilizing graph-based active learning from molecular dynamics to identify the regioselectivity of ginsenoside hydrolases (GHs), which selectively catalyze C6 or C20 positions to obtain rare deglycosylated bioactive compounds from
科研通智能强力驱动
Strongly Powered by AbleSci AI