Facing or avoiding? How dependence on artificial intelligence influences hotel employees’ job crafting

业务 酒店业 营销 款待 产业组织 旅游 政治学 法学
作者
Hongdan Zhao,Yunshuo Ma,Yuanhua Chen
出处
期刊:International Journal of Contemporary Hospitality Management [Emerald (MCB UP)]
卷期号:37 (6): 1884-1902 被引量:19
标识
DOI:10.1108/ijchm-06-2024-0939
摘要

Purpose As more hotels adopt artificial intelligence (AI), it becomes inevitable for employees to rely on abilities enhanced by the use of AI to complete tasks. However, our understanding of how employees adapt to this shift in work design remains limited. Therefore, the purpose of this study is to explore hotel employees’ approach and avoidance behavioral reactions to dependence on AI. Design/methodology/approach A three-wave field study was conducted, collecting data from 303 hotel employees and analyzed using Mplus 8.3. Findings Dependence on AI can be construed as a positive stimulus, augmenting employees’ harmonious work passion and subsequently promoting approach job crafting. The promotion focus of employees positively moderates this process. On the other hand, dependence on AI also can be perceived as a negative stimulus, heightening employees’ feelings of AI threat and, consequently, fostering avoidance job crafting. In this case, the prevention focus of employees positively moderates the process. Practical implications This study provides theoretical foundations and decision-making references for management practice. Managers should implement measures to guide employees in developing a proper understanding of AI and provide them with emotional support and institutional safeguards. Originality/value This study unveils the consequences of dependence on AI for employees, offering new perspectives for AI research in the hotel industry. By differentiating job crafting, this study theorizes and tests a dual-path model of how dependence on AI may influence hotel employees’ approach and avoidance job crafting, thereby enriching the AI–job crafting literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贪玩的蛋挞完成签到,获得积分10
刚刚
1秒前
vivre223完成签到,获得积分10
1秒前
sumugeng完成签到,获得积分10
2秒前
小小完成签到,获得积分10
2秒前
爱吃糖炒栗子的鱼完成签到,获得积分10
2秒前
2秒前
无私香彤发布了新的文献求助10
3秒前
ZHANG完成签到 ,获得积分10
3秒前
贤yu完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
务实映之完成签到,获得积分10
4秒前
5秒前
5秒前
吟月归客发布了新的文献求助10
5秒前
6秒前
研友_ZbMNPn完成签到,获得积分10
6秒前
雨水完成签到,获得积分10
7秒前
绿狗玩偶完成签到,获得积分20
7秒前
chruse完成签到,获得积分10
7秒前
斯文败类应助苏雨采纳,获得10
7秒前
Lament完成签到,获得积分10
8秒前
实验顺利应助zyyicu采纳,获得20
8秒前
Sewerant完成签到 ,获得积分10
9秒前
gwh完成签到,获得积分10
9秒前
猪猪猪发布了新的文献求助10
9秒前
喜悦的尔阳完成签到,获得积分10
9秒前
科研通AI2S应助xinjie采纳,获得10
9秒前
呓语完成签到 ,获得积分10
9秒前
落后念柏发布了新的文献求助10
10秒前
刘sir完成签到 ,获得积分10
10秒前
鱼丸完成签到 ,获得积分10
10秒前
10秒前
momo完成签到,获得积分10
10秒前
纪靖雁发布了新的文献求助10
10秒前
魔术师完成签到 ,获得积分10
11秒前
lilili完成签到,获得积分10
11秒前
428完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773811
求助须知:如何正确求助?哪些是违规求助? 5613858
关于积分的说明 15432836
捐赠科研通 4906205
什么是DOI,文献DOI怎么找? 2640110
邀请新用户注册赠送积分活动 1587960
关于科研通互助平台的介绍 1543002