材料科学
钙钛矿(结构)
卤化物
结晶
卤素
带隙
能量转换效率
化学工程
串联
光电子学
纳米技术
无机化学
有机化学
复合材料
化学
烷基
工程类
作者
Yang Yang,Qing Chang,Jie Su,Lingfeng Chao,Yong-Lei Wang,Zhiyuan Dai,Xiaofeng Huang,Siqing Nie,Pengfei Guo,Jun Yin,Zhe Liu,Yen‐Hung Lin,Alex K.‐Y. Jen,Ruihao Chen,Hongqiang Wang
标识
DOI:10.1002/adma.202416513
摘要
Developing strategies to manage ion-migration-induced phase segregation in wide-bandgap (WBG) perovskites is crucial for achieving high-performance perovskite-silicon tandem solar cells (TSCs). However, maintaining continuous suppression of phase segregation from the film crystallization process to device operation remains a significant challenge. The present study demonstrates an efficient strategy of activating halogen circulation in WBG perovskite by using halogen circulation agents (HCA) of N-halosuccinimide molecules as the sustainable stabilizers, in order to achieve dynamic halogen equilibrium within the precursor solution and perovskite film, which blocks the migration path of Br-/I- ions both in crystallization and aging of WBG perovskites. Attempts on in situ dynamic monitoring of halide migration visually verified the enhanced stability by activated halogen circulation in both WBG films and devices. Consequently, present work achieves a champion efficiency up to 23.25% with a low Voc loss of 0.39 V in the 1.67-eV-bandgap device, and the HCA-based devices can maintain 88% and 93% of their initial efficiencies over 1000 h under continuous illumination and 2500 h at 85 °C in N2 atmosphere, respectively. As a proof of concept, the perovskite/silicon monolithic TSCs are fabricated to demonstrate a high Voc of 1.99 V and a high power conversion efficiency of 33.2%.
科研通智能强力驱动
Strongly Powered by AbleSci AI