Enhanced Cooperative Generalized Compressive Strain and Electronic Structure Engineering in W‐Ni3N for Efficient Hydrazine Oxidation Facilitating H2 Production

材料科学 联氨(抗抑郁剂) 拉伤 生产(经济) 冶金 化学工程 结晶学 医学 化学 色谱法 内科学 工程类 经济 宏观经济学
作者
Hongye Qin,Guangliang Lin,Jinyang Zhang,Xuejie Cao,Wei Xia,Haocheng Yang,Kai Yuan,Ting Jin,Qing‐Lun Wang,Lifang Jiao
出处
期刊:Advanced Materials [Wiley]
标识
DOI:10.1002/adma.202417593
摘要

Abstract As promising bifunctional electrocatalysts, transition metal nitrides are expected to achieve an efficient hydrazine oxidation reaction (HzOR) by fine‐tuning electronic structure via strain engineering, thereby facilitating hydrogen production. However, understanding the correlation between strain‐induced atomic microenvironments and reactivity remains challenging. Herein, a generalized compressive strained W‐Ni 3 N catalyst is developed to create a surface with enriched electronic states that optimize intermediate binding and activate both water and N 2 H 4 . Multi‐dimensional characterizations reveal a nearly linear correlation between the hydrogen evolution reaction (HER) activity and the d‐band center of W‐Ni 3 N under strain state. Theoretically, compressive strain enhances the electron transfer capability at the surface, increasing donation into antibonding orbitals of adsorbed species, which accelerates the HER and HzOR. Leveraging both compressive strain and the modified electronic structure from W incorporation, the W‐Ni 3 N catalysts demonstrate outstanding bifunctional performance, achieving overpotentials of 46 mV for HER at 10 mA cm −2 and 81 mV for HzOR at 100 mA cm −2 . Furthermore, W‐Ni 3 N catalyst achieves efficient overall hydrazine splitting at a low cell voltage of 0.185 V for 50 mA cm −2 , maintaining stability for ≈450 h. This work provides new insights into the dual engineering of strain and electronic structure in the design of advanced catalysts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助rancho采纳,获得10
2秒前
西贝完成签到,获得积分20
3秒前
爆米花应助kk采纳,获得10
3秒前
4秒前
研究僧完成签到,获得积分10
4秒前
111完成签到,获得积分10
5秒前
7秒前
子然发布了新的文献求助10
8秒前
牛肉汉堡完成签到,获得积分10
8秒前
然后完成签到,获得积分10
8秒前
桐桐应助鸿儒采纳,获得10
8秒前
9秒前
9秒前
脑洞疼应助冷傲的迎南采纳,获得10
11秒前
pluto应助冷傲的迎南采纳,获得10
11秒前
香蕉觅云应助目分采纳,获得10
11秒前
消消乐发布了新的文献求助10
12秒前
隐形曼青应助FUN采纳,获得10
13秒前
闪闪的山槐完成签到,获得积分10
15秒前
爪爪完成签到,获得积分10
16秒前
sheep完成签到,获得积分10
16秒前
Lucas应助慧敏采纳,获得10
16秒前
波比冰苏打完成签到,获得积分10
19秒前
mmmmk完成签到,获得积分10
20秒前
20秒前
Hello应助木头采纳,获得10
21秒前
Inahurry完成签到,获得积分10
21秒前
默默的似狮完成签到,获得积分10
23秒前
狼牙月完成签到,获得积分10
24秒前
目分发布了新的文献求助10
24秒前
Araa发布了新的文献求助10
25秒前
精明的高跟鞋完成签到 ,获得积分10
26秒前
李健应助小新采纳,获得10
26秒前
27秒前
30秒前
认真龙猫发布了新的文献求助10
30秒前
林洛沁发布了新的文献求助10
31秒前
FashionBoy应助目分采纳,获得10
32秒前
32秒前
尘埃之影完成签到,获得积分10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3315407
求助须知:如何正确求助?哪些是违规求助? 2947285
关于积分的说明 8535515
捐赠科研通 2623433
什么是DOI,文献DOI怎么找? 1435048
科研通“疑难数据库(出版商)”最低求助积分说明 665452
邀请新用户注册赠送积分活动 651190