The Emerging Roles of Multimolecular G-Quadruplexes in Transcriptional Regulation and Chromatin Organization

染色质 发起人 抄写(语言学) 转录调控 生物 RNA聚合酶Ⅱ DNA 转录因子 基因表达调控 遗传学 基因 细胞生物学 基因表达 语言学 哲学
作者
Naura Fakhira Antariksa,Marco Di Antonio
出处
期刊:Accounts of Chemical Research [American Chemical Society]
标识
DOI:10.1021/acs.accounts.4c00574
摘要

ConspectusThe ability of genomic DNA to adopt non-canonical secondary structures known as G-quadruplexes (G4s) under physiological conditions has been recognized for its potential regulatory function of various biological processes. Among those, transcription has recently emerged as a key process that can be heavily affected by G4 formation, particularly when these structures form at gene promoters. While the presence of G4s within gene promoters has been traditionally associated with transcriptional inhibition, in a model whereby G4s act as roadblocks to polymerase elongation, recent genomics experiments have revealed that the regulatory role of G4s in transcription is more complex than initially anticipated. Indeed, earlier studies linking G4-formation and transcription mainly relied on small-molecule ligands to stabilize and promote G4s, which might lead to disruption of protein-DNA interactions and local environments and, therefore, does not necessarily reflect the endogenous function of G4s at gene promoters. There is now strong evidence pointing toward G4s being associated with transcriptional enhancement, rather than repression, through multifaceted mechanisms such as recruitment of key transcriptional proteins, molding of chromatin architecture, and mode of phase separation.In this Account, we explore pivotal findings from our research on a particular subset of G4s, namely, those formed through interactions between distant genomic locations or independent nucleic acid strands, referred to as multimolecular G4s (mG4s), and discuss their active role in transcriptional regulation. We present our recent studies suggesting that the formation of mG4s may positively regulate transcription by inducing phase-separation and selectively recruiting chromatin-remodeling proteins. Our work highlighted how mG4-forming DNA and RNA sequences can lead to liquid-liquid phase separation (LLPS) in the absence of any protein. This discovery provided new insights into a potential mechanism by which mG4 can positively regulate active gene expression, namely, by establishing DNA networks based on distal guanine-guanine base pairing that creates liquid droplets at the interface of DNA loops. This is particularly relevant in light of the increasing evidence suggesting that G4 structures formed at enhancers can drive elevated expression of the associated genes. Given the complex three-dimensional nature of enhancers, our findings underscore how mG4 formation at enhancers would be particularly beneficial for promoting transcription. Moreover, we will elaborate on our recent discovery of a DNA repair and chromatin remodeling protein named Cockayne Syndrome B (CSB) that displays astonishing binding selectivity to mG4s over the more canonical unimolecular counterparts, suggesting another role of mG4s for molding chromatin architecture at DNA loops sites.Altogether, the studies presented in this Account suggest that mG4 formation in a chromatin context could be a crucial yet underexplored structural feature for transcriptional regulation. Whether mG4s actively regulate transcription or are formed as a mere consequence of chromatin plasticity remains to be elucidated. Still, given the novel insights offered by our research and the potential for mG4s to be selectively targeted by chemical and biological probes, we anticipate that further studies into the fundamental biology regulated by these structures can provide unprecedented opportunities for the development of therapeutic agents aimed at targeting nucleic acids from a fresh perspective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦的旺仔完成签到,获得积分10
刚刚
Ava应助米奇妙妙虫采纳,获得10
1秒前
1秒前
思源应助学术机器1采纳,获得10
1秒前
1秒前
聪123完成签到,获得积分10
2秒前
在水一方应助嘴嘴采纳,获得10
2秒前
2秒前
3秒前
你好完成签到,获得积分10
3秒前
落寞松鼠完成签到,获得积分10
4秒前
ree完成签到 ,获得积分10
4秒前
大模型应助123采纳,获得10
4秒前
大模型应助木易采纳,获得10
4秒前
小九九发布了新的文献求助10
5秒前
云溪完成签到,获得积分10
5秒前
诚心涵柳完成签到,获得积分10
5秒前
惠向雁完成签到,获得积分10
5秒前
GDD发布了新的文献求助10
6秒前
xcr发布了新的文献求助10
6秒前
大个应助十一号采纳,获得10
6秒前
6秒前
6秒前
IFevan完成签到,获得积分10
7秒前
angelinazh发布了新的文献求助10
7秒前
皮卡丘发布了新的文献求助10
8秒前
8秒前
finoa完成签到,获得积分10
8秒前
9秒前
小蓝发布了新的文献求助10
9秒前
zgsn完成签到,获得积分10
9秒前
落寞松鼠发布了新的文献求助10
9秒前
10秒前
10秒前
雨辰完成签到,获得积分10
10秒前
11秒前
浮游应助oh采纳,获得10
11秒前
独孤幻月96完成签到,获得积分10
12秒前
乐乐应助成就的大娘采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603191
求助须知:如何正确求助?哪些是违规求助? 4012087
关于积分的说明 12421692
捐赠科研通 3692454
什么是DOI,文献DOI怎么找? 2035657
邀请新用户注册赠送积分活动 1068823
科研通“疑难数据库(出版商)”最低求助积分说明 953316