The Emerging Roles of Multimolecular G-Quadruplexes in Transcriptional Regulation and Chromatin Organization

染色质 发起人 抄写(语言学) 转录调控 生物 RNA聚合酶Ⅱ DNA 转录因子 基因表达调控 遗传学 基因 细胞生物学 基因表达 语言学 哲学
作者
Naura Fakhira Antariksa,Marco Di Antonio
出处
期刊:Accounts of Chemical Research [American Chemical Society]
标识
DOI:10.1021/acs.accounts.4c00574
摘要

ConspectusThe ability of genomic DNA to adopt non-canonical secondary structures known as G-quadruplexes (G4s) under physiological conditions has been recognized for its potential regulatory function of various biological processes. Among those, transcription has recently emerged as a key process that can be heavily affected by G4 formation, particularly when these structures form at gene promoters. While the presence of G4s within gene promoters has been traditionally associated with transcriptional inhibition, in a model whereby G4s act as roadblocks to polymerase elongation, recent genomics experiments have revealed that the regulatory role of G4s in transcription is more complex than initially anticipated. Indeed, earlier studies linking G4-formation and transcription mainly relied on small-molecule ligands to stabilize and promote G4s, which might lead to disruption of protein-DNA interactions and local environments and, therefore, does not necessarily reflect the endogenous function of G4s at gene promoters. There is now strong evidence pointing toward G4s being associated with transcriptional enhancement, rather than repression, through multifaceted mechanisms such as recruitment of key transcriptional proteins, molding of chromatin architecture, and mode of phase separation.In this Account, we explore pivotal findings from our research on a particular subset of G4s, namely, those formed through interactions between distant genomic locations or independent nucleic acid strands, referred to as multimolecular G4s (mG4s), and discuss their active role in transcriptional regulation. We present our recent studies suggesting that the formation of mG4s may positively regulate transcription by inducing phase-separation and selectively recruiting chromatin-remodeling proteins. Our work highlighted how mG4-forming DNA and RNA sequences can lead to liquid-liquid phase separation (LLPS) in the absence of any protein. This discovery provided new insights into a potential mechanism by which mG4 can positively regulate active gene expression, namely, by establishing DNA networks based on distal guanine-guanine base pairing that creates liquid droplets at the interface of DNA loops. This is particularly relevant in light of the increasing evidence suggesting that G4 structures formed at enhancers can drive elevated expression of the associated genes. Given the complex three-dimensional nature of enhancers, our findings underscore how mG4 formation at enhancers would be particularly beneficial for promoting transcription. Moreover, we will elaborate on our recent discovery of a DNA repair and chromatin remodeling protein named Cockayne Syndrome B (CSB) that displays astonishing binding selectivity to mG4s over the more canonical unimolecular counterparts, suggesting another role of mG4s for molding chromatin architecture at DNA loops sites.Altogether, the studies presented in this Account suggest that mG4 formation in a chromatin context could be a crucial yet underexplored structural feature for transcriptional regulation. Whether mG4s actively regulate transcription or are formed as a mere consequence of chromatin plasticity remains to be elucidated. Still, given the novel insights offered by our research and the potential for mG4s to be selectively targeted by chemical and biological probes, we anticipate that further studies into the fundamental biology regulated by these structures can provide unprecedented opportunities for the development of therapeutic agents aimed at targeting nucleic acids from a fresh perspective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美好善斓完成签到 ,获得积分10
1秒前
WangJL完成签到 ,获得积分10
4秒前
梨懵懵完成签到,获得积分10
5秒前
zjzjzjzjzj完成签到 ,获得积分10
5秒前
TUTU完成签到 ,获得积分10
6秒前
清脆的秋寒完成签到,获得积分10
6秒前
KJ完成签到,获得积分10
7秒前
xue完成签到 ,获得积分10
7秒前
风信子deon01完成签到,获得积分10
11秒前
Yuki完成签到 ,获得积分10
11秒前
13秒前
小蘑菇应助量子星尘采纳,获得150
13秒前
kaikai晴完成签到,获得积分10
14秒前
关中人完成签到,获得积分10
14秒前
Owen应助量子星尘采纳,获得10
15秒前
英姑应助量子星尘采纳,获得10
17秒前
FashionBoy应助量子星尘采纳,获得10
18秒前
19秒前
Brave发布了新的文献求助10
19秒前
YJ完成签到,获得积分10
19秒前
赘婿应助量子星尘采纳,获得10
19秒前
19秒前
酷酷小子完成签到 ,获得积分0
20秒前
英姑应助量子星尘采纳,获得10
20秒前
Nicole完成签到 ,获得积分10
21秒前
天选小牛马完成签到 ,获得积分10
21秒前
瘦瘦的铅笔完成签到 ,获得积分10
21秒前
bkagyin应助量子星尘采纳,获得10
22秒前
所所应助量子星尘采纳,获得10
22秒前
赘婿应助量子星尘采纳,获得10
22秒前
丰富的慕卉完成签到,获得积分10
22秒前
在水一方应助量子星尘采纳,获得10
23秒前
奋斗奋斗再奋斗完成签到,获得积分10
25秒前
Hello应助量子星尘采纳,获得10
25秒前
勤恳易真完成签到,获得积分10
25秒前
阳光保温杯完成签到 ,获得积分10
28秒前
852应助量子星尘采纳,获得30
29秒前
小蘑菇应助量子星尘采纳,获得150
30秒前
mengmenglv完成签到 ,获得积分0
30秒前
wanci应助量子星尘采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5325617
求助须知:如何正确求助?哪些是违规求助? 4465988
关于积分的说明 13895182
捐赠科研通 4358329
什么是DOI,文献DOI怎么找? 2394019
邀请新用户注册赠送积分活动 1387457
关于科研通互助平台的介绍 1358311