The Emerging Roles of Multimolecular G-Quadruplexes in Transcriptional Regulation and Chromatin Organization

染色质 发起人 抄写(语言学) 转录调控 生物 RNA聚合酶Ⅱ DNA 转录因子 基因表达调控 遗传学 基因 细胞生物学 基因表达 语言学 哲学
作者
Naura Fakhira Antariksa,Marco Di Antonio
出处
期刊:Accounts of Chemical Research [American Chemical Society]
标识
DOI:10.1021/acs.accounts.4c00574
摘要

ConspectusThe ability of genomic DNA to adopt non-canonical secondary structures known as G-quadruplexes (G4s) under physiological conditions has been recognized for its potential regulatory function of various biological processes. Among those, transcription has recently emerged as a key process that can be heavily affected by G4 formation, particularly when these structures form at gene promoters. While the presence of G4s within gene promoters has been traditionally associated with transcriptional inhibition, in a model whereby G4s act as roadblocks to polymerase elongation, recent genomics experiments have revealed that the regulatory role of G4s in transcription is more complex than initially anticipated. Indeed, earlier studies linking G4-formation and transcription mainly relied on small-molecule ligands to stabilize and promote G4s, which might lead to disruption of protein-DNA interactions and local environments and, therefore, does not necessarily reflect the endogenous function of G4s at gene promoters. There is now strong evidence pointing toward G4s being associated with transcriptional enhancement, rather than repression, through multifaceted mechanisms such as recruitment of key transcriptional proteins, molding of chromatin architecture, and mode of phase separation.In this Account, we explore pivotal findings from our research on a particular subset of G4s, namely, those formed through interactions between distant genomic locations or independent nucleic acid strands, referred to as multimolecular G4s (mG4s), and discuss their active role in transcriptional regulation. We present our recent studies suggesting that the formation of mG4s may positively regulate transcription by inducing phase-separation and selectively recruiting chromatin-remodeling proteins. Our work highlighted how mG4-forming DNA and RNA sequences can lead to liquid-liquid phase separation (LLPS) in the absence of any protein. This discovery provided new insights into a potential mechanism by which mG4 can positively regulate active gene expression, namely, by establishing DNA networks based on distal guanine-guanine base pairing that creates liquid droplets at the interface of DNA loops. This is particularly relevant in light of the increasing evidence suggesting that G4 structures formed at enhancers can drive elevated expression of the associated genes. Given the complex three-dimensional nature of enhancers, our findings underscore how mG4 formation at enhancers would be particularly beneficial for promoting transcription. Moreover, we will elaborate on our recent discovery of a DNA repair and chromatin remodeling protein named Cockayne Syndrome B (CSB) that displays astonishing binding selectivity to mG4s over the more canonical unimolecular counterparts, suggesting another role of mG4s for molding chromatin architecture at DNA loops sites.Altogether, the studies presented in this Account suggest that mG4 formation in a chromatin context could be a crucial yet underexplored structural feature for transcriptional regulation. Whether mG4s actively regulate transcription or are formed as a mere consequence of chromatin plasticity remains to be elucidated. Still, given the novel insights offered by our research and the potential for mG4s to be selectively targeted by chemical and biological probes, we anticipate that further studies into the fundamental biology regulated by these structures can provide unprecedented opportunities for the development of therapeutic agents aimed at targeting nucleic acids from a fresh perspective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松雨旋完成签到 ,获得积分10
刚刚
卫卫完成签到 ,获得积分10
2秒前
hwa完成签到,获得积分10
7秒前
顺心寄容完成签到,获得积分10
7秒前
yywang完成签到,获得积分10
10秒前
chemzhh完成签到,获得积分10
13秒前
哈哈哈完成签到 ,获得积分10
14秒前
苑小苑完成签到,获得积分10
19秒前
darcy完成签到,获得积分10
23秒前
眼睛大樱桃完成签到 ,获得积分10
23秒前
23秒前
daisy_chen完成签到 ,获得积分10
24秒前
无道则愚完成签到 ,获得积分10
27秒前
高高完成签到,获得积分10
28秒前
开拖拉机的芍药完成签到 ,获得积分10
28秒前
sule完成签到,获得积分10
28秒前
完美梦之完成签到,获得积分10
30秒前
发发旦旦完成签到,获得积分10
34秒前
34秒前
开放飞阳完成签到,获得积分10
35秒前
fomo完成签到,获得积分10
35秒前
39秒前
旧雨新知完成签到 ,获得积分0
40秒前
hy完成签到 ,获得积分10
41秒前
源孤律醒完成签到 ,获得积分10
42秒前
Much完成签到 ,获得积分10
46秒前
红烧肉耶完成签到 ,获得积分10
46秒前
某只橘猫君完成签到,获得积分10
49秒前
羊白玉完成签到 ,获得积分10
50秒前
浪子完成签到,获得积分10
53秒前
53秒前
vothuong完成签到,获得积分10
55秒前
科研王子完成签到 ,获得积分10
57秒前
十月的天空完成签到 ,获得积分10
59秒前
朴若琛完成签到,获得积分10
1分钟前
猕猴桃完成签到 ,获得积分10
1分钟前
清清清完成签到 ,获得积分10
1分钟前
CLTTTt完成签到,获得积分10
1分钟前
如意土豆完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568349
求助须知:如何正确求助?哪些是违规求助? 4652840
关于积分的说明 14702135
捐赠科研通 4594664
什么是DOI,文献DOI怎么找? 2521188
邀请新用户注册赠送积分活动 1492928
关于科研通互助平台的介绍 1463734