The Emerging Roles of Multimolecular G-Quadruplexes in Transcriptional Regulation and Chromatin Organization

染色质 发起人 抄写(语言学) 转录调控 生物 RNA聚合酶Ⅱ DNA 转录因子 基因表达调控 遗传学 基因 细胞生物学 基因表达 语言学 哲学
作者
Naura Fakhira Antariksa,Marco Di Antonio
出处
期刊:Accounts of Chemical Research [American Chemical Society]
标识
DOI:10.1021/acs.accounts.4c00574
摘要

ConspectusThe ability of genomic DNA to adopt non-canonical secondary structures known as G-quadruplexes (G4s) under physiological conditions has been recognized for its potential regulatory function of various biological processes. Among those, transcription has recently emerged as a key process that can be heavily affected by G4 formation, particularly when these structures form at gene promoters. While the presence of G4s within gene promoters has been traditionally associated with transcriptional inhibition, in a model whereby G4s act as roadblocks to polymerase elongation, recent genomics experiments have revealed that the regulatory role of G4s in transcription is more complex than initially anticipated. Indeed, earlier studies linking G4-formation and transcription mainly relied on small-molecule ligands to stabilize and promote G4s, which might lead to disruption of protein-DNA interactions and local environments and, therefore, does not necessarily reflect the endogenous function of G4s at gene promoters. There is now strong evidence pointing toward G4s being associated with transcriptional enhancement, rather than repression, through multifaceted mechanisms such as recruitment of key transcriptional proteins, molding of chromatin architecture, and mode of phase separation.In this Account, we explore pivotal findings from our research on a particular subset of G4s, namely, those formed through interactions between distant genomic locations or independent nucleic acid strands, referred to as multimolecular G4s (mG4s), and discuss their active role in transcriptional regulation. We present our recent studies suggesting that the formation of mG4s may positively regulate transcription by inducing phase-separation and selectively recruiting chromatin-remodeling proteins. Our work highlighted how mG4-forming DNA and RNA sequences can lead to liquid-liquid phase separation (LLPS) in the absence of any protein. This discovery provided new insights into a potential mechanism by which mG4 can positively regulate active gene expression, namely, by establishing DNA networks based on distal guanine-guanine base pairing that creates liquid droplets at the interface of DNA loops. This is particularly relevant in light of the increasing evidence suggesting that G4 structures formed at enhancers can drive elevated expression of the associated genes. Given the complex three-dimensional nature of enhancers, our findings underscore how mG4 formation at enhancers would be particularly beneficial for promoting transcription. Moreover, we will elaborate on our recent discovery of a DNA repair and chromatin remodeling protein named Cockayne Syndrome B (CSB) that displays astonishing binding selectivity to mG4s over the more canonical unimolecular counterparts, suggesting another role of mG4s for molding chromatin architecture at DNA loops sites.Altogether, the studies presented in this Account suggest that mG4 formation in a chromatin context could be a crucial yet underexplored structural feature for transcriptional regulation. Whether mG4s actively regulate transcription or are formed as a mere consequence of chromatin plasticity remains to be elucidated. Still, given the novel insights offered by our research and the potential for mG4s to be selectively targeted by chemical and biological probes, we anticipate that further studies into the fundamental biology regulated by these structures can provide unprecedented opportunities for the development of therapeutic agents aimed at targeting nucleic acids from a fresh perspective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
凤凰山发布了新的文献求助10
1秒前
1秒前
孔雨珍发布了新的文献求助10
1秒前
淡定的思松应助通~采纳,获得10
2秒前
2秒前
明亮的八宝粥完成签到,获得积分10
2秒前
mayungui发布了新的文献求助10
2秒前
大型海狮完成签到,获得积分10
2秒前
搜集达人应助科研菜鸟采纳,获得10
3秒前
雨天有伞完成签到,获得积分10
3秒前
蕾子发布了新的文献求助10
3秒前
3秒前
zhui发布了新的文献求助10
3秒前
wanci应助jxcandice采纳,获得10
3秒前
factor发布了新的文献求助10
3秒前
4秒前
泊声发布了新的文献求助20
4秒前
narthon完成签到 ,获得积分10
4秒前
梦幻完成签到,获得积分10
4秒前
1604531786完成签到,获得积分10
4秒前
研友_LMNjkn发布了新的文献求助10
5秒前
xiao发布了新的文献求助10
5秒前
ww发布了新的文献求助10
5秒前
6秒前
Olsters发布了新的文献求助10
6秒前
深情安青应助该睡觉啦采纳,获得10
6秒前
6秒前
SEV完成签到,获得积分20
6秒前
愉快迎荷完成签到,获得积分10
7秒前
矮小的聪展完成签到,获得积分10
8秒前
factor完成签到,获得积分10
8秒前
Hello应助李来仪采纳,获得10
9秒前
SEV发布了新的文献求助10
9秒前
9秒前
9秒前
坚强亦丝应助隐形机器猫采纳,获得10
10秒前
小马甲应助SCI采纳,获得10
11秒前
老疯智发布了新的文献求助10
11秒前
sweetbearm应助通~采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794