亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Emerging Roles of Multimolecular G-Quadruplexes in Transcriptional Regulation and Chromatin Organization

染色质 发起人 抄写(语言学) 转录调控 生物 RNA聚合酶Ⅱ DNA 转录因子 基因表达调控 遗传学 基因 细胞生物学 基因表达 语言学 哲学
作者
Naura Fakhira Antariksa,Marco Di Antonio
出处
期刊:Accounts of Chemical Research [American Chemical Society]
标识
DOI:10.1021/acs.accounts.4c00574
摘要

ConspectusThe ability of genomic DNA to adopt non-canonical secondary structures known as G-quadruplexes (G4s) under physiological conditions has been recognized for its potential regulatory function of various biological processes. Among those, transcription has recently emerged as a key process that can be heavily affected by G4 formation, particularly when these structures form at gene promoters. While the presence of G4s within gene promoters has been traditionally associated with transcriptional inhibition, in a model whereby G4s act as roadblocks to polymerase elongation, recent genomics experiments have revealed that the regulatory role of G4s in transcription is more complex than initially anticipated. Indeed, earlier studies linking G4-formation and transcription mainly relied on small-molecule ligands to stabilize and promote G4s, which might lead to disruption of protein-DNA interactions and local environments and, therefore, does not necessarily reflect the endogenous function of G4s at gene promoters. There is now strong evidence pointing toward G4s being associated with transcriptional enhancement, rather than repression, through multifaceted mechanisms such as recruitment of key transcriptional proteins, molding of chromatin architecture, and mode of phase separation.In this Account, we explore pivotal findings from our research on a particular subset of G4s, namely, those formed through interactions between distant genomic locations or independent nucleic acid strands, referred to as multimolecular G4s (mG4s), and discuss their active role in transcriptional regulation. We present our recent studies suggesting that the formation of mG4s may positively regulate transcription by inducing phase-separation and selectively recruiting chromatin-remodeling proteins. Our work highlighted how mG4-forming DNA and RNA sequences can lead to liquid-liquid phase separation (LLPS) in the absence of any protein. This discovery provided new insights into a potential mechanism by which mG4 can positively regulate active gene expression, namely, by establishing DNA networks based on distal guanine-guanine base pairing that creates liquid droplets at the interface of DNA loops. This is particularly relevant in light of the increasing evidence suggesting that G4 structures formed at enhancers can drive elevated expression of the associated genes. Given the complex three-dimensional nature of enhancers, our findings underscore how mG4 formation at enhancers would be particularly beneficial for promoting transcription. Moreover, we will elaborate on our recent discovery of a DNA repair and chromatin remodeling protein named Cockayne Syndrome B (CSB) that displays astonishing binding selectivity to mG4s over the more canonical unimolecular counterparts, suggesting another role of mG4s for molding chromatin architecture at DNA loops sites.Altogether, the studies presented in this Account suggest that mG4 formation in a chromatin context could be a crucial yet underexplored structural feature for transcriptional regulation. Whether mG4s actively regulate transcription or are formed as a mere consequence of chromatin plasticity remains to be elucidated. Still, given the novel insights offered by our research and the potential for mG4s to be selectively targeted by chemical and biological probes, we anticipate that further studies into the fundamental biology regulated by these structures can provide unprecedented opportunities for the development of therapeutic agents aimed at targeting nucleic acids from a fresh perspective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平淡的衣完成签到,获得积分10
刚刚
NexusExplorer应助AXX041795采纳,获得10
7秒前
星星科语发布了新的文献求助10
7秒前
简单发布了新的文献求助20
8秒前
魔幻的芳完成签到,获得积分10
12秒前
SSY发布了新的文献求助10
12秒前
火星上的宝马完成签到,获得积分10
15秒前
平淡的衣发布了新的文献求助20
16秒前
17秒前
悲凉的忆南完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
22秒前
陈旧完成签到,获得积分10
22秒前
25秒前
25秒前
欣欣子完成签到,获得积分10
26秒前
虚拟的清炎完成签到 ,获得积分10
28秒前
sunstar完成签到,获得积分10
29秒前
XXXXXX发布了新的文献求助10
32秒前
yxl完成签到,获得积分10
33秒前
可耐的盈完成签到,获得积分10
36秒前
绿毛水怪完成签到,获得积分10
39秒前
yg发布了新的文献求助10
41秒前
lsc完成签到,获得积分10
43秒前
XXXXXX完成签到,获得积分10
45秒前
45秒前
星星科语完成签到,获得积分20
45秒前
小fei完成签到,获得积分10
47秒前
andrele发布了新的文献求助10
50秒前
麻辣薯条完成签到,获得积分10
50秒前
hanlin给滕祥的求助进行了留言
52秒前
时尚身影完成签到,获得积分10
54秒前
leoduo完成签到,获得积分0
57秒前
ryx发布了新的文献求助10
59秒前
流苏2完成签到,获得积分10
1分钟前
1分钟前
斯文败类应助科研通管家采纳,获得30
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
绍华发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723656
求助须知:如何正确求助?哪些是违规求助? 5279993
关于积分的说明 15299011
捐赠科研通 4872033
什么是DOI,文献DOI怎么找? 2616484
邀请新用户注册赠送积分活动 1566311
关于科研通互助平台的介绍 1523187