Artificial intelligence‐aided colonoscopic differential diagnosis between Crohn's disease and gastrointestinal tuberculosis

医学 结肠镜检查 接收机工作特性 克罗恩病 诊断准确性 人工智能 肺结核 内科学 胃肠病学 放射科 疾病 病理 计算机科学 癌症 结直肠癌
作者
Kwangbeom Park,Jisup Lim,Seung Hwan Shin,Munemasa Ryu,Heehyun Shin,Min Young Lee,Seung Wook Hong,Sung Wook Hwang,Sang Hyoung Park,Dong‐Hoon Yang,Byong Duk Ye,Seung‐Jae Myung,Suk‐Kyun Yang,Namkug Kim,Jeong‐Sik Byeon
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
标识
DOI:10.1111/jgh.16788
摘要

Abstract Background and Aim Differentiating between Crohn's disease (CD) and gastrointestinal tuberculosis (GITB) is challenging. We aimed to evaluate the clinical applicability of an artificial intelligence (AI) model for this purpose. Methods The AI model was developed and assessed using an internal dataset comprising 1,132 colonoscopy images of CD and 1,045 colonoscopy images of GITB at a tertiary referral center. Its stand‐alone performance was further evaluated in an external dataset comprising 67 colonoscopy images of 17 CD patients and 63 colonoscopy images of 14 GITB patients from other institutions. Additionally, a crossover trial involving three expert endoscopists and three trainee endoscopists compared AI‐assisted and unassisted human interpretations. Results In the internal dataset, the sensitivity, specificity, and accuracy of the AI model in distinguishing between CD and GITB were 95.3%, 100.0%, and 97.7%, respectively, with an area under the ROC curve of 0.997. In the external dataset, the AI model exhibited a sensitivity, specificity, and accuracy of 77.8%, 85.1%, and 81.5%, respectively, with an area under the ROC curve of 0.877. In the human endoscopist trial, AI assistance increased the pooled accuracy of the six endoscopists from 86.2% to 88.8% ( P = 0.010). While AI did not significantly enhance diagnostic accuracy for the experts (96.7% with AI vs 95.6% without, P = 0.360), it significantly improved accuracy for the trainees (81.0% vs 76.7%, P = 0.002). Conclusions This AI model shows potential in aiding the accurate differential diagnosis between CD and GITB, particularly benefiting less experienced endoscopists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
DY发布了新的文献求助10
2秒前
钢琴海豹完成签到,获得积分10
2秒前
2秒前
Snowychen完成签到,获得积分10
3秒前
3秒前
劲秉应助端庄的萝采纳,获得20
4秒前
高兴星完成签到,获得积分10
4秒前
传奇3应助Godlove采纳,获得10
4秒前
4秒前
windli发布了新的文献求助10
4秒前
WANG完成签到,获得积分20
5秒前
Lucas应助一颗椰子糖耶采纳,获得10
6秒前
情怀应助时尚战斗机采纳,获得10
7秒前
ytli发布了新的文献求助20
7秒前
lllkkk发布了新的文献求助10
8秒前
欧小嘢发布了新的文献求助10
8秒前
sundial发布了新的文献求助10
9秒前
Godlove完成签到,获得积分10
11秒前
百里新梅发布了新的文献求助10
11秒前
lichaoyes完成签到,获得积分10
12秒前
Jasper应助平常的玲采纳,获得10
13秒前
老迟到的羊完成签到 ,获得积分10
13秒前
pony发布了新的文献求助30
14秒前
zjjcrystal完成签到,获得积分20
14秒前
香蕉觅云应助丽虹采纳,获得10
15秒前
科研通AI2S应助lllkkk采纳,获得10
16秒前
科研通AI5应助小石头采纳,获得10
16秒前
16秒前
西柚柠檬完成签到 ,获得积分10
17秒前
科研通AI5应助Hresearch采纳,获得10
17秒前
18秒前
嘟噜完成签到 ,获得积分10
20秒前
百里新梅完成签到,获得积分10
20秒前
21秒前
21秒前
xuan发布了新的文献求助10
23秒前
HAHA发布了新的文献求助10
24秒前
ybwei2008_163完成签到,获得积分10
24秒前
Pursue_ME发布了新的文献求助10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735644
求助须知:如何正确求助?哪些是违规求助? 3279426
关于积分的说明 10015198
捐赠科研通 2996127
什么是DOI,文献DOI怎么找? 1643895
邀请新用户注册赠送积分活动 781551
科研通“疑难数据库(出版商)”最低求助积分说明 749423