COX‐2 Inhibitor Prediction With KNIME: A Codeless Automated Machine Learning‐Based Virtual Screening Workflow

工作流程 计算机科学 虚拟筛选 机器学习 化学 数据库 药物发现 生物化学
作者
Powsali Ghosh,Ashok Kumar,Sushil Kumar Singh
出处
期刊:Journal of Computational Chemistry [Wiley]
卷期号:46 (2)
标识
DOI:10.1002/jcc.70030
摘要

Cyclooxygenase-2 (COX-2) is an enzyme that plays a crucial role in inflammation by converting arachidonic acid into prostaglandins. The overexpression of enzyme is associated with conditions such as cancer, arthritis, and Alzheimer's disease (AD), where it contributes to neuroinflammation. In silico virtual screening is pivotal in early-stage drug discovery; however, the absence of coding or machine learning expertise can impede the development of reliable computational models capable of accurately predicting inhibitor compounds based on their chemical structure. In this study, we developed an automated KNIME workflow for predicting the COX-2 inhibitory potential of novel molecules by building a multi-level ensemble model constructed with five machine learning algorithms (i.e., Logistic Regression, K-Nearest Neighbors, Decision Tree, Random Forest, and Extreme Gradient Boosting) and various molecular and fingerprint descriptors (i.e., AtomPair, Avalon, MACCS, Morgan, RDKit, and Pattern). Post-applicability domain filtering, the final majority voting-based ensemble model achieved 90.0% balanced accuracy, 87.7% precision, and 86.4% recall on the external validation set. The freely accessible workflow empowers users to swiftly and effortlessly predict COX-2 inhibitors, eliminating the need for any prior knowledge in machine learning, coding, or statistical modeling, significantly broadening its accessibility. While beginners can seamlessly use the tool as is, experienced KNIME users can leverage it as a foundation to build advanced workflows, driving further research and innovation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小孩完成签到 ,获得积分10
1秒前
cocolu应助dablack采纳,获得200
3秒前
隐形曼青应助ligen采纳,获得10
5秒前
6秒前
biubiubiu完成签到,获得积分10
7秒前
terryok发布了新的文献求助10
9秒前
Linn完成签到 ,获得积分10
10秒前
羽扇纶巾完成签到,获得积分10
11秒前
11秒前
烟花应助允怡采纳,获得10
11秒前
彭于晏应助城南徐师傅采纳,获得10
13秒前
13秒前
灵巧书本发布了新的文献求助10
15秒前
打打应助白凉鞋采纳,获得10
15秒前
沈业桥发布了新的文献求助10
15秒前
16秒前
17秒前
欧阳万仇发布了新的文献求助10
18秒前
忽忽完成签到,获得积分10
18秒前
bluecedar关注了科研通微信公众号
20秒前
诗懿发布了新的文献求助10
20秒前
21秒前
小白发布了新的文献求助10
21秒前
21秒前
在水一方应助毕襄采纳,获得10
22秒前
奚斌完成签到,获得积分10
22秒前
fan完成签到,获得积分10
23秒前
酸奶泡面应助terryok采纳,获得30
25秒前
允怡发布了新的文献求助10
26秒前
26秒前
王俊完成签到,获得积分20
27秒前
28秒前
落后访风完成签到,获得积分10
28秒前
29秒前
2799完成签到,获得积分10
29秒前
30秒前
愉快的芒果完成签到,获得积分10
31秒前
31秒前
31秒前
caohai发布了新的文献求助10
31秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343583
求助须知:如何正确求助?哪些是违规求助? 2970629
关于积分的说明 8644643
捐赠科研通 2650717
什么是DOI,文献DOI怎么找? 1451432
科研通“疑难数据库(出版商)”最低求助积分说明 672137
邀请新用户注册赠送积分活动 661569