A Comparative Analysis of Buckling Pressure Prediction in Composite Cylindrical Shells Under External Loads Using Machine Learning

屈曲 复合数 结构工程 材料科学 复合材料 工程类
作者
Hyung Gi Lee,Jung Min Sohn
出处
期刊:Journal of Marine Science and Engineering [MDPI AG]
卷期号:12 (12): 2301-2301
标识
DOI:10.3390/jmse12122301
摘要

Composite materials are increasingly utilized in engineering due to their superior properties such as strength, flexibility, and corrosion resistance. However, accurately predicting the buckling pressure of composite cylindrical shells under external loads remains challenging due to the complexities introduced by various stacking methods. This study addressed this challenge by integrating advanced machine learning techniques with simulation-based data generation through finite element analysis (FEA). A comprehensive dataset comprising 1369 simulation results was generated using ANSYS ACP, focusing on cylindrical shells modeled with an 8-mm-thick filament winding technique and T700 material. The stacking angles ranged from −90 degrees to 90 degrees in 5-degree increments. Stacking configurations (inputs) and their corresponding buckling strength (outputs) were generated using ANSYS ACP. Machine learning models, including linear regression, elastic net, polynomial regression, random forest, support vector regression, XGBoost regression, and artificial neural networks, were implemented using Python 3.8 and Scikit-learn (version 0.24.2). A comparative analysis of these methods revealed their model performance, providing insights into the most effective approaches. Additionally, the accuracy of these models was then evaluated on previously unseen input data, allowing for a comparison of their out-of-sample accuracy. The results demonstrated that the random forest model and XGBoost regression achieved superior accuracy with minimal prediction errors. The study highlights the critical role of machine learning in predicting buckling pressure, which is essential for ensuring structural integrity and optimizing performance in marine engineering and other applications involving composite materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
tan发布了新的文献求助10
1秒前
1秒前
2秒前
朴素的雪萍完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
所所应助吴q采纳,获得10
5秒前
5秒前
健壮聪展完成签到,获得积分10
5秒前
Monday完成签到,获得积分10
6秒前
shtatbf应助yxxzmliii采纳,获得30
6秒前
7秒前
pyimh完成签到,获得积分10
7秒前
江边鸟发布了新的文献求助20
7秒前
xjcy应助科通研AI采纳,获得10
7秒前
qq完成签到,获得积分10
7秒前
8秒前
10秒前
ding应助时尚的寄松采纳,获得10
10秒前
Monday发布了新的文献求助10
10秒前
10秒前
FashionBoy应助成就的外套采纳,获得10
12秒前
labordoc完成签到,获得积分10
12秒前
qq发布了新的文献求助10
12秒前
轻松寄风发布了新的文献求助10
12秒前
Lucas应助不知名的呆毛采纳,获得10
14秒前
kl完成签到 ,获得积分10
14秒前
guojingjing发布了新的文献求助10
15秒前
16秒前
16秒前
wuxunxun2015发布了新的文献求助10
16秒前
17秒前
Milu完成签到,获得积分10
18秒前
zyx6328057发布了新的文献求助10
19秒前
20秒前
20秒前
科通研AI完成签到,获得积分10
20秒前
20秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221211
求助须知:如何正确求助?哪些是违规求助? 2869857
关于积分的说明 8167963
捐赠科研通 2536680
什么是DOI,文献DOI怎么找? 1368983
科研通“疑难数据库(出版商)”最低求助积分说明 645303
邀请新用户注册赠送积分活动 619002