A Neural Network-Enhanced Finite Difference Approach for Strain Demand Prediction of Inelastic Pipes Subjected to Ground Displacement

流离失所(心理学) 人工神经网络 结构工程 有限元法 拉伤 计算机科学 工程类 人工智能 医学 心理学 内科学 心理治疗师
作者
Beilei Ji,Qian Zheng,Qipei Mei,Nader Yoosef‐Ghodsi,Samer Adeeb
标识
DOI:10.1115/ipc2024-131971
摘要

Abstract Permanent ground displacement induced by geohazards poses a significant threat to the integrity of pipelines due to the potential for excessive strain. Accurately predicting strain demand is critical for guiding the design of new pipelines and assessing the risks associated with existing ones crossing geohazard zones. Previously, a finite difference approach for strain demand prediction in pipes subjected to permanent ground displacement was developed by the authors. It has been proven to be a simple and valuable technique for practical use in the pipeline industry, compared with conservative empirical formulas and time-consuming finite element modeling. However, the existing method relies on explicit expressions for axial force and bending moment, derived under the assumption of a bilinear stress-strain curve for the material, which restricts its applicability when dealing with more complex constitutive models that require numerical integration. To remedy this situation, a novel approach that models constitutive law using deep neural networks is proposed, serving as an alternative means for capturing stress-strain relationship. This novel approach is integrated into the finite difference scheme to overcome the constraints of the original method, thereby enhancing its applicability. A comprehensive case study was conducted to evaluate the effectiveness of the proposed neural network-enhanced finite difference approach in comparison to the original method. Results from this study demonstrated that the proposed method can achieve comparable accuracy to the original finite difference method when dealing with small ground displacements. The finding indicates the potential advantages of the proposed method in efficiently handling more complex constitutive relations, which will be explored in future work.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
贺贺完成签到,获得积分10
1秒前
2秒前
科研通AI5应助迷人寒梦采纳,获得10
3秒前
3秒前
小二郎应助优美的心情采纳,获得10
4秒前
橙橙妈妈发布了新的文献求助10
5秒前
5秒前
Hanayu完成签到 ,获得积分10
5秒前
5秒前
狂野吐司完成签到,获得积分10
7秒前
CipherSage应助激动的一手采纳,获得10
7秒前
7秒前
鸡哥完成签到,获得积分10
8秒前
8秒前
哥哥完成签到,获得积分10
8秒前
8秒前
10秒前
12秒前
YW发布了新的文献求助10
12秒前
Qintt完成签到 ,获得积分10
13秒前
完美世界应助YY采纳,获得10
13秒前
科研通AI5应助tjr采纳,获得10
13秒前
13秒前
14秒前
15秒前
科目三应助阿宝采纳,获得10
16秒前
CipherSage应助WANG采纳,获得10
17秒前
18秒前
迷人寒梦发布了新的文献求助10
18秒前
cctv18应助负责冰凡采纳,获得10
19秒前
娇气的芷巧完成签到 ,获得积分10
20秒前
外向白开水完成签到 ,获得积分10
21秒前
BYG完成签到,获得积分20
21秒前
22秒前
luogan完成签到,获得积分10
23秒前
23秒前
PeterDeng完成签到,获得积分10
23秒前
邀名射利应助Hayat采纳,获得30
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756463
求助须知:如何正确求助?哪些是违规求助? 3299827
关于积分的说明 10111524
捐赠科研通 3014401
什么是DOI,文献DOI怎么找? 1655483
邀请新用户注册赠送积分活动 789943
科研通“疑难数据库(出版商)”最低求助积分说明 753511