亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Neural Network-Enhanced Finite Difference Approach for Strain Demand Prediction of Inelastic Pipes Subjected to Ground Displacement

流离失所(心理学) 人工神经网络 结构工程 有限元法 拉伤 计算机科学 工程类 人工智能 心理学 医学 内科学 心理治疗师
作者
Beilei Ji,Qian Zheng,Qipei Mei,Nader Yoosef‐Ghodsi,Samer Adeeb
标识
DOI:10.1115/ipc2024-131971
摘要

Abstract Permanent ground displacement induced by geohazards poses a significant threat to the integrity of pipelines due to the potential for excessive strain. Accurately predicting strain demand is critical for guiding the design of new pipelines and assessing the risks associated with existing ones crossing geohazard zones. Previously, a finite difference approach for strain demand prediction in pipes subjected to permanent ground displacement was developed by the authors. It has been proven to be a simple and valuable technique for practical use in the pipeline industry, compared with conservative empirical formulas and time-consuming finite element modeling. However, the existing method relies on explicit expressions for axial force and bending moment, derived under the assumption of a bilinear stress-strain curve for the material, which restricts its applicability when dealing with more complex constitutive models that require numerical integration. To remedy this situation, a novel approach that models constitutive law using deep neural networks is proposed, serving as an alternative means for capturing stress-strain relationship. This novel approach is integrated into the finite difference scheme to overcome the constraints of the original method, thereby enhancing its applicability. A comprehensive case study was conducted to evaluate the effectiveness of the proposed neural network-enhanced finite difference approach in comparison to the original method. Results from this study demonstrated that the proposed method can achieve comparable accuracy to the original finite difference method when dealing with small ground displacements. The finding indicates the potential advantages of the proposed method in efficiently handling more complex constitutive relations, which will be explored in future work.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧心的士萧完成签到,获得积分10
刚刚
今后应助科研通管家采纳,获得10
4秒前
7秒前
15秒前
夏天无完成签到 ,获得积分10
15秒前
Cloud发布了新的文献求助10
20秒前
33秒前
gkhsdvkb发布了新的文献求助10
36秒前
yin景景完成签到,获得积分10
37秒前
科研通AI6.2应助开霁采纳,获得10
1分钟前
李健的小迷弟应助颖颖采纳,获得10
1分钟前
1分钟前
颖颖发布了新的文献求助10
1分钟前
颖颖完成签到,获得积分10
1分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
单薄咖啡豆完成签到 ,获得积分10
2分钟前
2分钟前
开霁发布了新的文献求助10
2分钟前
凡人完成签到 ,获得积分10
2分钟前
Jayzie完成签到 ,获得积分10
2分钟前
沉香续断完成签到,获得积分20
2分钟前
古古怪界丶黑大帅完成签到,获得积分10
3分钟前
酷波er应助沉香续断采纳,获得10
4分钟前
wanci应助科研通管家采纳,获得10
4分钟前
Ava应助科研通管家采纳,获得10
4分钟前
Hvginn完成签到,获得积分10
4分钟前
苏子愈完成签到 ,获得积分10
4分钟前
动听衬衫完成签到 ,获得积分10
4分钟前
动听衬衫完成签到 ,获得积分10
4分钟前
动听衬衫完成签到 ,获得积分10
4分钟前
4分钟前
沉香续断发布了新的文献求助10
4分钟前
4分钟前
隐形曼青应助结实青丝采纳,获得10
4分钟前
孤独蘑菇完成签到 ,获得积分10
4分钟前
5分钟前
6分钟前
王骧完成签到,获得积分10
6分钟前
美满信封完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870815
求助须知:如何正确求助?哪些是违规求助? 6468169
关于积分的说明 15665055
捐赠科研通 4987063
什么是DOI,文献DOI怎么找? 2689150
邀请新用户注册赠送积分活动 1631491
关于科研通互助平台的介绍 1589535