Preoperative detection of extraprostatic tumor extension in patients with primary prostate cancer utilizing [68Ga]Ga-PSMA-11 PET/MRI

医学 前列腺癌 前列腺切除术 神经组阅片室 放射科 介入放射学 磁共振成像 核医学 癌症 内科学 神经学 精神科
作者
Clemens P. Spielvogel,Jing Ning,Kilian Kluge,David Haberl,Gabriel Wasinger,Josef Yu,Holger Einspieler,László Papp,Bernhard Grubmüller,Shahrokh F. Shariat,Pascal Baltzer,Paola Clauser,Markus Hartenbach,Lukas Kenner,Marcus Hacker,Alexander Haug,Sazan Rasul
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1186/s13244-024-01876-5
摘要

Abstract Objectives Radical prostatectomy (RP) is a common intervention in patients with localized prostate cancer (PCa), with nerve-sparing RP recommended to reduce adverse effects on patient quality of life. Accurate pre-operative detection of extraprostatic extension (EPE) remains challenging, often leading to the application of suboptimal treatment. The aim of this study was to enhance pre-operative EPE detection through multimodal data integration using explainable machine learning (ML). Methods Patients with newly diagnosed PCa who underwent [ 68 Ga]Ga-PSMA-11 PET/MRI and subsequent RP were recruited retrospectively from two time ranges for training, cross-validation, and independent validation. The presence of EPE was measured from post-surgical histopathology and predicted using ML and pre-operative parameters, including PET/MRI-derived features, blood-based markers, histology-derived parameters, and demographic parameters. ML models were subsequently compared with conventional PET/MRI-based image readings. Results The study involved 107 patients, 59 (55%) of whom were affected by EPE according to postoperative findings for the initial training and cross-validation. The ML models demonstrated superior diagnostic performance over conventional PET/MRI image readings, with the explainable boosting machine model achieving an AUC of 0.88 (95% CI 0.87–0.89) during cross-validation and an AUC of 0.88 (95% CI 0.75–0.97) during independent validation. The ML approach integrating invasive features demonstrated better predictive capabilities for EPE compared to visual clinical read-outs (Cross-validation AUC 0.88 versus 0.71, p = 0.02). Conclusion ML based on routinely acquired clinical data can significantly improve the pre-operative detection of EPE in PCa patients, potentially enabling more accurate clinical staging and decision-making, thereby improving patient outcomes. Critical relevance statement This study demonstrates that integrating multimodal data with machine learning significantly improves the pre-operative detection of extraprostatic extension in prostate cancer patients, outperforming conventional imaging methods and potentially leading to more accurate clinical staging and better treatment decisions. Key Points Extraprostatic extension is an important indicator guiding treatment approaches. Current assessment of extraprostatic extension is difficult and lacks accuracy. Machine learning improves detection of extraprostatic extension using PSMA-PET/MRI and histopathology. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵雪碧完成签到 ,获得积分10
1秒前
6秒前
7秒前
7秒前
pleaaure发布了新的文献求助10
8秒前
9秒前
cxl666完成签到,获得积分10
9秒前
爆米花应助老牛采纳,获得10
9秒前
healer完成签到,获得积分10
9秒前
DQY发布了新的文献求助10
11秒前
surain发布了新的文献求助10
14秒前
丰富的不惜完成签到,获得积分10
15秒前
16秒前
善学以致用应助Ricochet采纳,获得10
19秒前
深情安青应助舒适的平蓝采纳,获得10
19秒前
Bressanone发布了新的文献求助10
20秒前
Lindsey完成签到 ,获得积分20
20秒前
张无缺完成签到,获得积分10
20秒前
21秒前
健忘的海莲完成签到,获得积分10
22秒前
斯文败类应助俏皮的向彤采纳,获得10
23秒前
Billy应助蛙蛙采纳,获得30
23秒前
26秒前
dxm发布了新的文献求助10
26秒前
wwwwww发布了新的文献求助30
26秒前
26秒前
JSDYCH完成签到,获得积分10
29秒前
30秒前
小橘发布了新的文献求助30
30秒前
Ricochet发布了新的文献求助10
31秒前
想水SCI发布了新的文献求助10
32秒前
ling发布了新的文献求助10
33秒前
干饭完成签到,获得积分10
35秒前
玫瑰星云完成签到,获得积分10
35秒前
keyaner完成签到,获得积分10
35秒前
打打应助lvlv采纳,获得10
36秒前
洵音完成签到,获得积分10
36秒前
present完成签到,获得积分10
37秒前
子车定帮发布了新的文献求助30
37秒前
40秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299938
求助须知:如何正确求助?哪些是违规求助? 2934780
关于积分的说明 8470445
捐赠科研通 2608342
什么是DOI,文献DOI怎么找? 1424154
科研通“疑难数据库(出版商)”最低求助积分说明 661873
邀请新用户注册赠送积分活动 645601