Preoperative detection of extraprostatic tumor extension in patients with primary prostate cancer utilizing [68Ga]Ga-PSMA-11 PET/MRI

医学 前列腺癌 前列腺切除术 神经组阅片室 放射科 介入放射学 磁共振成像 核医学 癌症 内科学 神经学 精神科
作者
Clemens P. Spielvogel,Jing Ning,Kilian Kluge,David Haberl,Gabriel Wasinger,Josef Yu,Holger Einspieler,László Papp,Bernhard Grubmüller,Shahrokh F. Shariat,Pascal Baltzer,Paola Clauser,Markus Hartenbach,Lukas Kenner,Marcus Hacker,Alexander Haug,Sazan Rasul
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1) 被引量:1
标识
DOI:10.1186/s13244-024-01876-5
摘要

Abstract Objectives Radical prostatectomy (RP) is a common intervention in patients with localized prostate cancer (PCa), with nerve-sparing RP recommended to reduce adverse effects on patient quality of life. Accurate pre-operative detection of extraprostatic extension (EPE) remains challenging, often leading to the application of suboptimal treatment. The aim of this study was to enhance pre-operative EPE detection through multimodal data integration using explainable machine learning (ML). Methods Patients with newly diagnosed PCa who underwent [ 68 Ga]Ga-PSMA-11 PET/MRI and subsequent RP were recruited retrospectively from two time ranges for training, cross-validation, and independent validation. The presence of EPE was measured from post-surgical histopathology and predicted using ML and pre-operative parameters, including PET/MRI-derived features, blood-based markers, histology-derived parameters, and demographic parameters. ML models were subsequently compared with conventional PET/MRI-based image readings. Results The study involved 107 patients, 59 (55%) of whom were affected by EPE according to postoperative findings for the initial training and cross-validation. The ML models demonstrated superior diagnostic performance over conventional PET/MRI image readings, with the explainable boosting machine model achieving an AUC of 0.88 (95% CI 0.87–0.89) during cross-validation and an AUC of 0.88 (95% CI 0.75–0.97) during independent validation. The ML approach integrating invasive features demonstrated better predictive capabilities for EPE compared to visual clinical read-outs (Cross-validation AUC 0.88 versus 0.71, p = 0.02). Conclusion ML based on routinely acquired clinical data can significantly improve the pre-operative detection of EPE in PCa patients, potentially enabling more accurate clinical staging and decision-making, thereby improving patient outcomes. Critical relevance statement This study demonstrates that integrating multimodal data with machine learning significantly improves the pre-operative detection of extraprostatic extension in prostate cancer patients, outperforming conventional imaging methods and potentially leading to more accurate clinical staging and better treatment decisions. Key Points Extraprostatic extension is an important indicator guiding treatment approaches. Current assessment of extraprostatic extension is difficult and lacks accuracy. Machine learning improves detection of extraprostatic extension using PSMA-PET/MRI and histopathology. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
李文霄发布了新的文献求助10
刚刚
darling发布了新的文献求助10
1秒前
1秒前
Three完成签到,获得积分10
2秒前
3秒前
华仔应助房梦寒采纳,获得10
3秒前
3秒前
科研通AI2S应助DWQ采纳,获得10
3秒前
一一完成签到,获得积分10
3秒前
4秒前
雪山飞龙发布了新的文献求助10
4秒前
魏艳秋发布了新的文献求助30
4秒前
冥灵花火完成签到,获得积分10
5秒前
西岭发布了新的文献求助10
5秒前
elerain完成签到,获得积分10
6秒前
6秒前
零碎的岛屿完成签到,获得积分10
6秒前
英吉利25发布了新的文献求助10
7秒前
michi发布了新的文献求助20
7秒前
追寻冰淇淋完成签到,获得积分10
7秒前
清澈完成签到,获得积分10
8秒前
weddcf发布了新的文献求助20
8秒前
FashionBoy应助Geo_new采纳,获得10
8秒前
星空点点完成签到 ,获得积分10
8秒前
彭于晏应助擎天柱采纳,获得10
8秒前
orixero应助大蛋采纳,获得10
9秒前
orixero应助细腻的谷丝采纳,获得10
9秒前
干将莫邪发布了新的文献求助10
9秒前
怡然的芯完成签到,获得积分10
9秒前
glory发布了新的文献求助10
11秒前
浮游应助入暖采纳,获得10
11秒前
11秒前
黄石完成签到,获得积分20
12秒前
14秒前
14秒前
15秒前
科研通AI6应助Dong采纳,获得10
16秒前
快乐修勾完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415536
求助须知:如何正确求助?哪些是违规求助? 4532163
关于积分的说明 14132430
捐赠科研通 4447786
什么是DOI,文献DOI怎么找? 2439866
邀请新用户注册赠送积分活动 1431907
关于科研通互助平台的介绍 1409459