Preoperative detection of extraprostatic tumor extension in patients with primary prostate cancer utilizing [68Ga]Ga-PSMA-11 PET/MRI

医学 前列腺癌 前列腺切除术 神经组阅片室 放射科 介入放射学 磁共振成像 核医学 癌症 内科学 神经学 精神科
作者
Clemens P. Spielvogel,Jing Ning,Kilian Kluge,David Haberl,Gabriel Wasinger,Josef Yu,Holger Einspieler,László Papp,Bernhard Grubmüller,Shahrokh F. Shariat,Pascal Baltzer,Paola Clauser,Markus Hartenbach,Lukas Kenner,Marcus Hacker,Alexander Haug,Sazan Rasul
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1) 被引量:1
标识
DOI:10.1186/s13244-024-01876-5
摘要

Abstract Objectives Radical prostatectomy (RP) is a common intervention in patients with localized prostate cancer (PCa), with nerve-sparing RP recommended to reduce adverse effects on patient quality of life. Accurate pre-operative detection of extraprostatic extension (EPE) remains challenging, often leading to the application of suboptimal treatment. The aim of this study was to enhance pre-operative EPE detection through multimodal data integration using explainable machine learning (ML). Methods Patients with newly diagnosed PCa who underwent [ 68 Ga]Ga-PSMA-11 PET/MRI and subsequent RP were recruited retrospectively from two time ranges for training, cross-validation, and independent validation. The presence of EPE was measured from post-surgical histopathology and predicted using ML and pre-operative parameters, including PET/MRI-derived features, blood-based markers, histology-derived parameters, and demographic parameters. ML models were subsequently compared with conventional PET/MRI-based image readings. Results The study involved 107 patients, 59 (55%) of whom were affected by EPE according to postoperative findings for the initial training and cross-validation. The ML models demonstrated superior diagnostic performance over conventional PET/MRI image readings, with the explainable boosting machine model achieving an AUC of 0.88 (95% CI 0.87–0.89) during cross-validation and an AUC of 0.88 (95% CI 0.75–0.97) during independent validation. The ML approach integrating invasive features demonstrated better predictive capabilities for EPE compared to visual clinical read-outs (Cross-validation AUC 0.88 versus 0.71, p = 0.02). Conclusion ML based on routinely acquired clinical data can significantly improve the pre-operative detection of EPE in PCa patients, potentially enabling more accurate clinical staging and decision-making, thereby improving patient outcomes. Critical relevance statement This study demonstrates that integrating multimodal data with machine learning significantly improves the pre-operative detection of extraprostatic extension in prostate cancer patients, outperforming conventional imaging methods and potentially leading to more accurate clinical staging and better treatment decisions. Key Points Extraprostatic extension is an important indicator guiding treatment approaches. Current assessment of extraprostatic extension is difficult and lacks accuracy. Machine learning improves detection of extraprostatic extension using PSMA-PET/MRI and histopathology. Graphical Abstract

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞槐发布了新的文献求助10
刚刚
刚刚
1秒前
咿呀喂发布了新的文献求助10
1秒前
wanci应助123采纳,获得30
2秒前
粲妈发布了新的文献求助10
2秒前
华仔应助长度2到采纳,获得10
3秒前
羽毛发布了新的文献求助10
3秒前
3秒前
3秒前
善学以致用应助Yapi采纳,获得10
4秒前
yuanxianxian发布了新的文献求助10
4秒前
yang完成签到,获得积分10
4秒前
5秒前
CodeCraft应助Foalphaz采纳,获得10
6秒前
6秒前
容二遥发布了新的文献求助20
7秒前
Orange应助jsq采纳,获得10
7秒前
蔡大鲸完成签到,获得积分10
7秒前
不想取名字完成签到 ,获得积分10
7秒前
Stella发布了新的文献求助10
8秒前
CipherSage应助Szy采纳,获得10
8秒前
酷波er应助李凌霄采纳,获得10
9秒前
9秒前
Zengjx发布了新的文献求助10
9秒前
传奇3应助wangchong采纳,获得10
9秒前
飞槐完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
Infinity完成签到,获得积分10
10秒前
10秒前
10秒前
XD824发布了新的文献求助10
10秒前
Nam楠完成签到,获得积分10
11秒前
petpet发布了新的文献求助10
11秒前
abab小王完成签到,获得积分10
11秒前
罗罗罗完成签到 ,获得积分10
11秒前
11秒前
辛勤冷松完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791