Preoperative detection of extraprostatic tumor extension in patients with primary prostate cancer utilizing [68Ga]Ga-PSMA-11 PET/MRI

医学 前列腺癌 前列腺切除术 神经组阅片室 放射科 介入放射学 磁共振成像 核医学 癌症 内科学 神经学 精神科
作者
Clemens P. Spielvogel,Jing Ning,Kilian Kluge,David Haberl,Gabriel Wasinger,Josef Yu,Holger Einspieler,László Papp,Bernhard Grubmüller,Shahrokh F. Shariat,Pascal Baltzer,Paola Clauser,Markus Hartenbach,Lukas Kenner,Marcus Hacker,Alexander Haug,Sazan Rasul
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1) 被引量:1
标识
DOI:10.1186/s13244-024-01876-5
摘要

Abstract Objectives Radical prostatectomy (RP) is a common intervention in patients with localized prostate cancer (PCa), with nerve-sparing RP recommended to reduce adverse effects on patient quality of life. Accurate pre-operative detection of extraprostatic extension (EPE) remains challenging, often leading to the application of suboptimal treatment. The aim of this study was to enhance pre-operative EPE detection through multimodal data integration using explainable machine learning (ML). Methods Patients with newly diagnosed PCa who underwent [ 68 Ga]Ga-PSMA-11 PET/MRI and subsequent RP were recruited retrospectively from two time ranges for training, cross-validation, and independent validation. The presence of EPE was measured from post-surgical histopathology and predicted using ML and pre-operative parameters, including PET/MRI-derived features, blood-based markers, histology-derived parameters, and demographic parameters. ML models were subsequently compared with conventional PET/MRI-based image readings. Results The study involved 107 patients, 59 (55%) of whom were affected by EPE according to postoperative findings for the initial training and cross-validation. The ML models demonstrated superior diagnostic performance over conventional PET/MRI image readings, with the explainable boosting machine model achieving an AUC of 0.88 (95% CI 0.87–0.89) during cross-validation and an AUC of 0.88 (95% CI 0.75–0.97) during independent validation. The ML approach integrating invasive features demonstrated better predictive capabilities for EPE compared to visual clinical read-outs (Cross-validation AUC 0.88 versus 0.71, p = 0.02). Conclusion ML based on routinely acquired clinical data can significantly improve the pre-operative detection of EPE in PCa patients, potentially enabling more accurate clinical staging and decision-making, thereby improving patient outcomes. Critical relevance statement This study demonstrates that integrating multimodal data with machine learning significantly improves the pre-operative detection of extraprostatic extension in prostate cancer patients, outperforming conventional imaging methods and potentially leading to more accurate clinical staging and better treatment decisions. Key Points Extraprostatic extension is an important indicator guiding treatment approaches. Current assessment of extraprostatic extension is difficult and lacks accuracy. Machine learning improves detection of extraprostatic extension using PSMA-PET/MRI and histopathology. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敬鱼发布了新的文献求助10
1秒前
雾里完成签到,获得积分10
1秒前
CCH发布了新的文献求助10
1秒前
2秒前
李健应助王灿章采纳,获得10
2秒前
科研通AI5应助月亮采纳,获得10
2秒前
小王小王发布了新的文献求助10
3秒前
啵赞的龟丝儿完成签到,获得积分10
3秒前
fanfan44390完成签到,获得积分10
3秒前
共享精神应助坚定的寒松采纳,获得10
3秒前
害羞文博发布了新的文献求助10
4秒前
ermu应助felix采纳,获得10
5秒前
毛毛弟发布了新的文献求助10
5秒前
曾无忧应助felix采纳,获得10
5秒前
wjx发布了新的文献求助10
6秒前
6秒前
激动的跳跳糖完成签到 ,获得积分10
7秒前
7秒前
ZeKaWa应助HY采纳,获得10
8秒前
9秒前
xxy发布了新的文献求助30
9秒前
9秒前
Tiramisu628发布了新的文献求助10
10秒前
李健应助小娅娅采纳,获得10
10秒前
冯123发布了新的文献求助10
10秒前
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得30
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
英勇的飞扬完成签到,获得积分10
11秒前
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
Libra应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097113
求助须知:如何正确求助?哪些是违规求助? 4309682
关于积分的说明 13427832
捐赠科研通 4137094
什么是DOI,文献DOI怎么找? 2266469
邀请新用户注册赠送积分活动 1269541
关于科研通互助平台的介绍 1205874