亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of a machine learning predictive model for central venous catheter‐associated thrombosis in patients undergoing abdominal surgery

医学 中心静脉导管 静脉血栓形成 导管 血栓形成 外科 腹部外科 腹腔隔室综合征 腹部
作者
Zirong Li,Cheng Zhang,Xiao Gan,Liying Liu,Yanmei Tan,Yanping Ying
出处
期刊:Nursing in critical care [Wiley]
标识
DOI:10.1111/nicc.13233
摘要

Central venous catheters (CVCs) are placed where the vena cava meets the right atrium. Their common use raises the risk of catheter-related thrombosis (CRT), a potentially life-threatening complication. This study leverages machine learning to develop a CRT predictive model for abdominal surgery patients, aiming to refine clinical decisions and elevate treatment quality. The data were split into training and validation sets using the caret package in R. Decision Trees (DT), Extra Trees (ET), Ada Boost, Gradient Boosting (GB), Light Gradient Boosting Machine (LGBM), K Neighbours Classifier (KNN) and Random Forest (RF) algorithms were used for model construction. Receiver operating characteristic (ROC) curve, area under curve (AUC), accuracy, recall, precision, F1 score, sensitivity and specificity were used to evaluate the performance of the model. Decision curve analysis (DCA) was used to evaluate the clinical utility of each model. Among the 400 subjects, 184 had thrombosis, with an incidence of 46%. Basic characteristics analysis and univariate analysis showed that there were significant differences in the history of radiotherapy or chemotherapy, age, mobility score, retention time, D-dimer, fibrinogen and urea (p < .05). Among the models constructed by the seven algorithms, the performance of DT model was relatively balanced. The AUC of the validation set was 0.782, the sensitivity was 0.618, and the specificity was 0.781. The predictive model for CRT developed using machine learning algorithms demonstrates good discrimination and clinical applicability among abdominal surgery patients, offering valuable guidance for CRT prevention strategies. By integrating risk prediction models into the Hospital Information System (HIS), nurses can assess catheter status in a timely and accurate manner, understand the risks of thrombosis for patients, and implement targeted preventive measures. This approach can enhance the efficiency and accuracy of nursing care, holding clinical significance in critical care practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
stay完成签到,获得积分20
1秒前
3秒前
stay发布了新的文献求助10
4秒前
科研小白完成签到 ,获得积分10
9秒前
顺心半双完成签到,获得积分10
10秒前
小蘑菇应助景熙采纳,获得10
11秒前
zhong完成签到,获得积分10
13秒前
微信研友完成签到 ,获得积分10
14秒前
林狗完成签到 ,获得积分10
18秒前
23秒前
科研通AI2S应助surrran采纳,获得10
24秒前
ShengQ完成签到,获得积分10
32秒前
33秒前
刘多多完成签到,获得积分10
39秒前
一二三亖完成签到,获得积分10
48秒前
Hello应助ZXX采纳,获得10
49秒前
文艺的枫叶完成签到 ,获得积分10
59秒前
wangdong完成签到,获得积分10
1分钟前
SciGPT应助maclogos采纳,获得10
1分钟前
jyy完成签到,获得积分10
1分钟前
1分钟前
qq发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
景熙发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
ZXX发布了新的文献求助10
1分钟前
景熙完成签到,获得积分10
1分钟前
ZXX完成签到,获得积分10
2分钟前
yangfan发布了新的文献求助10
2分钟前
爱寻完成签到 ,获得积分10
2分钟前
派大赐完成签到,获得积分10
2分钟前
3分钟前
狗十七完成签到 ,获得积分10
3分钟前
白云垛发布了新的文献求助10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460014
求助须知:如何正确求助?哪些是违规求助? 3054351
关于积分的说明 9041785
捐赠科研通 2743636
什么是DOI,文献DOI怎么找? 1505071
科研通“疑难数据库(出版商)”最低求助积分说明 695572
邀请新用户注册赠送积分活动 694860