A Lightweight Road Traffic Sign Detection Algorithm Based on Adaptive Sparse Channel Pruning

计算机科学 交通标志识别 修剪 算法 联营 核(代数) 增采样 棱锥(几何) 卷积(计算机科学) 特征(语言学) 一般化 失败 推论 人工智能 模式识别(心理学) 交通标志 符号(数学) 人工神经网络 图像(数学) 数学 数学分析 语言学 哲学 几何学 组合数学 并行计算 农学 生物
作者
Xiaolong Zheng,Zhiwei Guan,Qiang Chen,Guoqiang Wen,Xiaofeng Lu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad9517
摘要

Abstract The development of Traffic Sign Recognition (TSR) has become increasingly important for enhancing the safety and convenience of assisted driving. To achieve high accuracy, faster inference speed, and a lightweight model, an improved lightweight Traffic Sign Recognition network, termed YOLOv8-ALWP, has been proposed. This network incorporates Adaptive Downsampling (ADown) to replace the original convolution module in YOLOv8. By employing multiple pooling and convolution operations, it reduces the spatial resolution to extract additional feature information. To accommodate the varying scale characteristics of different traffic signs, Large Separable Kernel Attention (LSKA) is introduced to enhance Spatial Pyramid Pooling-Fast (SPPF). Furthermore, the Complete Intersection over Union (CIoU) loss has been improved, and a new Wise-Focaler-EIoU Loss has been proposed to accelerate model convergence and enhance generalization capabilities. Finally, Layer-Adaptive Sparsity for Magnitude-Based Pruning (LAMP) is employed to reduce the model's parameters, decrease computational complexity, and improve inference speed. Experiments were conducted using the TT100K, Roadsign, CCTSDB, and GTSDB datasets. In the TT100K dataset, compared to the baseline model, the improved algorithm significantly reduced parameters by 64.67%, FLOPs by 44.44%, and increased mAP by 1.7%, precision by 5.5%, and FPS from 70.3 to 81.7, respectively. Under four specific conditions, the improved algorithm effectively addressed the shortcomings of the baseline model, such as missed detections and reduced accuracy. These experimental results indicate that the YOLOv8-ALWP algorithm achieves model lightweighting while enhancing detection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助开始游戏55采纳,获得30
刚刚
负责的雪碧应助Forever采纳,获得10
刚刚
刚刚
Owen应助xyq采纳,获得10
1秒前
1秒前
酷波er应助扶石采纳,获得10
1秒前
蓝冰香筱完成签到 ,获得积分10
2秒前
3秒前
3秒前
哈哈发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
nanfeng发布了新的文献求助10
6秒前
卡皮巴拉发布了新的文献求助10
6秒前
7秒前
7秒前
CipherSage应助踏实的熠彤采纳,获得10
9秒前
10秒前
呱呱乐发布了新的文献求助10
10秒前
阳光怀亦发布了新的文献求助10
11秒前
小艾冂学发布了新的文献求助30
12秒前
畅快的鱼发布了新的文献求助10
12秒前
yu发布了新的文献求助10
13秒前
14秒前
14秒前
拽住小时候关注了科研通微信公众号
15秒前
Singularity举报白玉汤顿首求助涉嫌违规
15秒前
15秒前
16秒前
夏侯德东完成签到,获得积分10
17秒前
hzuii发布了新的文献求助10
19秒前
拳击帅哥完成签到,获得积分10
19秒前
刘坦苇发布了新的文献求助10
20秒前
poting应助maybe采纳,获得10
20秒前
maox1aoxin应助呱呱乐采纳,获得30
21秒前
小蘑菇应助呱呱乐采纳,获得10
21秒前
YOLO发布了新的文献求助10
21秒前
维c泡腾片发布了新的文献求助10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459305
求助须知:如何正确求助?哪些是违规求助? 3053795
关于积分的说明 9038595
捐赠科研通 2743133
什么是DOI,文献DOI怎么找? 1504672
科研通“疑难数据库(出版商)”最低求助积分说明 695354
邀请新用户注册赠送积分活动 694664