Direct injection of electrons into Cu active sites from porous phosphorus-doped g-C3N4 for enhanced Fenton-like performance

X射线光电子能谱 催化作用 煅烧 激进的 降级(电信) 兴奋剂 多孔性 无机化学 材料科学 分解 傅里叶变换红外光谱 化学 化学工程 有机化学 冶金 电信 工程类 光电子学 计算机科学
作者
Aitao Chen,Chao Li,Conghua Liu,Wuzhu Sun
出处
期刊:Applied Surface Science [Elsevier]
卷期号:628: 157359-157359
标识
DOI:10.1016/j.apsusc.2023.157359
摘要

Copper oxides were supported on porous P-doped g-C3N4 (Cu/p-PCN) by a stepwise calcination process. Elemental analysis, XPS, and ESR results show that P atoms enter the network of g-C3N4, and the thus-fabricated configuration could provide additional electrons for the conjugated system of g-C3N4. As verified by TEM, XRD, XPS, and FTIR results, copper is mainly present as oxides on the catalyst surface and undergoes Cu-π interactions with porous P-doped g-C3N4 (p-PCN). During the reaction, unpaired electrons in p-PCN can be injected into the Cu active sites, prompting the decomposition of H2O2 into hydroxyl radicals (•OH). The degradation begins with the activation of H2O2 into •OH radicals by the Cu(I) active center. The depleted Cu(I) centers are then regenerated by electron injection from P atoms rather than by the reaction between H2O2 and Cu(I). Thus, the catalyst performance and H2O2 utilization are greatly enhanced. Equally significantly, the porous structure of Cu/p-PCN also contributes appreciably to its performance by increasing the specific surface area and active sites. Cu/p-PCN exhibits better performance than many reported catalysts in similar conditions, robust resistance to interference from various ions, high degradation efficiency over a wide pH range, and excellent degradation ability for various pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
刚刚
迟大猫应助乐乱采纳,获得10
1秒前
万能图书馆应助派大星采纳,获得10
2秒前
FashionBoy应助娜行采纳,获得10
3秒前
3秒前
传奇3应助后知后觉采纳,获得10
4秒前
4秒前
4秒前
科研通AI2S应助Chem is try采纳,获得10
4秒前
5秒前
a方舟发布了新的文献求助10
5秒前
寒冷书竹发布了新的文献求助10
5秒前
5秒前
hhh发布了新的文献求助10
5秒前
顾矜应助富婆嘉嘉子采纳,获得10
5秒前
5秒前
5秒前
6秒前
江风海韵完成签到,获得积分10
6秒前
火星上的从雪完成签到,获得积分10
6秒前
在水一方应助kai采纳,获得10
6秒前
打打应助留胡子的青柏采纳,获得10
7秒前
7秒前
zhanghw发布了新的文献求助10
7秒前
Frank完成签到,获得积分10
7秒前
桐桐应助小喵采纳,获得10
7秒前
香蕉觅云应助执笔客采纳,获得10
7秒前
light完成签到 ,获得积分10
7秒前
你仔细听完成签到,获得积分10
8秒前
8秒前
Sailzyf完成签到,获得积分10
8秒前
抓恐龙发布了新的文献求助10
8秒前
8秒前
汉堡包应助言小采纳,获得10
9秒前
Chen发布了新的文献求助10
9秒前
lql233完成签到,获得积分20
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672