阳极
锌
法拉第效率
材料科学
六亚甲基四胺
单独一对
分子
无机化学
电解质
电偶阳极
金属
水溶液
剥离(纤维)
化学工程
电极
化学
有机化学
物理化学
冶金
阴极保护
复合材料
工程类
作者
Huaming Yu,Dongping Chen,Quanyu Li,Chunshuang Yan,Zihao Jiang,Liangjun Zhou,Weifeng Wei,Jianmin Ma,Xiaobo Ji,Yuejiao Chen,Libao Chen
标识
DOI:10.1002/aenm.202300550
摘要
Abstract The practical application of aqueous zinc batteries (AZBs) is significantly limited by the poor reversibility of the zinc anodes, including rampant dendrite growth and severe interfacial side‐reactions. Herein, trace hexamethylenetetramine (HMTA) additive with a lone‐pair‐electron containing heterocycle is introduced for Zn metal anode protection. Specifically, the trace added HMTA can change the solvated structure by strong interaction with zinc ions, and preferentially absorb on the anode surface to in situ establish an unique anode–molecule interface. Such an interface not only shows strong affinity to promote the dynamic transmission and deposition of Zn 2+ ions but also displays a role in suppressing parasitic reactions. Consequently, a zinc anode in an electrolyte with trace HMTA achieves a high Coulombic efficiency of 99.75%, and delivers a remarkable lifespan over 4000 h at 5 mA cm −2 and 1 mAh cm −2 in a Zn//Zn symmetric cell. Even under a deep plating/stripping condition (5 mA cm −2 and 5 mAh cm −2 ), it can still run almost for 600 h. Additionally, the Zn//V 2 O 5 full cell with HMTA retains a high capacity retention of 61.7% after 4000 cycles at 5 A g −1 . Such an innovative strategy is expected to be of immediate benefit to design low‐cost AZBs with ultra‐long lifespan.
科研通智能强力驱动
Strongly Powered by AbleSci AI