材料科学
阳极
阴极
电极
锂(药物)
金属锂
纳米技术
制作
电流密度
剥离(纤维)
光电子学
复合材料
电气工程
医学
化学
物理化学
内分泌学
工程类
替代医学
物理
病理
量子力学
作者
Hua Wang,Jianbo Li,Yunhui Huang,Zhen Li
标识
DOI:10.1021/acsami.3c00379
摘要
Critical challenges such as safety and cyclability concerns resulting from the uncontrollable dendritic lithium (Li) growth, especially during the fast charging/discharging process, have seriously hampered the commercialization of Li metal batteries (LMBs). Here, a novel array-patterned LiFePO4 (LFP) cathode prepared via a simple, scalable calendaring method is developed to enable highly stable Li metal anodes with patterned ditches and bulges during the cell assembling process. Both the structured electrodes provide a remarkably increased electroactive surface area to lower the current density locally, facilitating Li-ion transport kinetics and homogeneous Li plating/stripping. Due to the long-term internal pressure in the cell, the structured LFP and Li electrodes can maintain their original structure during sustained cycling. Such distinctive electrode architectures and cell design synergistically enable excellent rate capability with a discharge capacity of up to 128 mA h g-1 at a high current density of 9 mA cm-2 and impressive cycling stability, with 89.6% capacity retention after 300 cycles at 1.5 mA cm-2. Moreover, ultrasonic transmission mapping is carried out and demonstrates no gas behavior in operating modified Li||LFP pouch cells over prolonged cycling. This simple fabrication method can potentially be applied to many other active materials to enable practical LMBs with high performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI