Focus on New Test Cases in Continuous Integration Testing based on Reinforcement Learning

计算机科学 回归检验 强化学习 测试用例 光学(聚焦) 机器学习 考试(生物学) 人工智能 集成测试 软件 数据挖掘 回归分析 软件系统 软件建设 程序设计语言 古生物学 物理 光学 生物
作者
Fanliang Chen,Zheng Li,Yuwei Shang,Yang Yang
标识
DOI:10.1109/qrs57517.2022.00088
摘要

In software regression testing, newly added test cases are more likely to fail, and therefore, should be prioritized for execution. In software regression testing for continuous integration, reinforcement learning-based approaches are promising and the RETECS (Reinforced Test Case Prioritization and Selection) framework is a successful application case. RETECS uses an agent composed of a neural network to predict the priority of test cases, and the agent needs to learn from historical information to make improvements. However, the newly added test cases have no historical execution information, thus using RETECS to predict their priority is more like ‘random’. In this paper, we focus on new test cases for continuous integration testing, and on the basis of the RETECS framework, we first propose a priority assignment method for new test cases to ensure that they can be executed first. Secondly, continuous integration is a fast iterative integration method where new test cases have strong fault detection capability within the latest periods. Therefore, we further propose an additional reward method for new test cases. Finally, based on the full lifecycle management, the ‘new’ additional rewards need to be terminated within a certain period, and this paper implements an empirical study. We conducted 30 iterations of the experiment on 12 datasets and our best results were 19.24%, 10.67%, and 34.05 positions better compared to the best parameter combination in RETECS for the NAPFD (Normalized Average Percentage of Faults Detected), RECALL and TTF (Test to Fail) metrics, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
合适台灯发布了新的文献求助10
刚刚
小白发布了新的文献求助200
1秒前
今后应助baby3480采纳,获得10
1秒前
情怀应助小眼儿采纳,获得10
2秒前
3秒前
damnxas完成签到,获得积分10
5秒前
6秒前
桐桐应助热心小松鼠采纳,获得10
7秒前
Hello应助热心小松鼠采纳,获得10
7秒前
Ava应助热心小松鼠采纳,获得10
7秒前
科目三应助热心小松鼠采纳,获得10
7秒前
Owen应助热心小松鼠采纳,获得10
7秒前
丘比特应助热心小松鼠采纳,获得10
7秒前
情怀应助热心小松鼠采纳,获得10
7秒前
小蘑菇应助热心小松鼠采纳,获得10
7秒前
深情安青应助热心小松鼠采纳,获得10
7秒前
科目三应助ysy采纳,获得10
7秒前
思源应助热心小松鼠采纳,获得10
7秒前
8秒前
dd发布了新的文献求助10
10秒前
华贞完成签到,获得积分10
10秒前
11秒前
AlanLi发布了新的文献求助10
11秒前
CodeCraft应助cc采纳,获得10
14秒前
风趣青槐完成签到,获得积分10
14秒前
Ava应助honglingjing采纳,获得10
15秒前
shine完成签到,获得积分10
15秒前
努力学习完成签到,获得积分10
15秒前
小眼儿发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
18秒前
shine发布了新的文献求助20
19秒前
April发布了新的文献求助10
20秒前
努力学习发布了新的文献求助10
20秒前
20秒前
一只龟龟发布了新的文献求助10
21秒前
21秒前
Sun发布了新的文献求助10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966742
求助须知:如何正确求助?哪些是违规求助? 3512237
关于积分的说明 11162366
捐赠科研通 3247107
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804432