Focus on New Test Cases in Continuous Integration Testing based on Reinforcement Learning

计算机科学 回归检验 强化学习 测试用例 光学(聚焦) 机器学习 考试(生物学) 人工智能 集成测试 软件 数据挖掘 回归分析 软件系统 软件建设 程序设计语言 古生物学 物理 光学 生物
作者
Fanliang Chen,Zheng Li,Yuwei Shang,Yang Yang
标识
DOI:10.1109/qrs57517.2022.00088
摘要

In software regression testing, newly added test cases are more likely to fail, and therefore, should be prioritized for execution. In software regression testing for continuous integration, reinforcement learning-based approaches are promising and the RETECS (Reinforced Test Case Prioritization and Selection) framework is a successful application case. RETECS uses an agent composed of a neural network to predict the priority of test cases, and the agent needs to learn from historical information to make improvements. However, the newly added test cases have no historical execution information, thus using RETECS to predict their priority is more like ‘random’. In this paper, we focus on new test cases for continuous integration testing, and on the basis of the RETECS framework, we first propose a priority assignment method for new test cases to ensure that they can be executed first. Secondly, continuous integration is a fast iterative integration method where new test cases have strong fault detection capability within the latest periods. Therefore, we further propose an additional reward method for new test cases. Finally, based on the full lifecycle management, the ‘new’ additional rewards need to be terminated within a certain period, and this paper implements an empirical study. We conducted 30 iterations of the experiment on 12 datasets and our best results were 19.24%, 10.67%, and 34.05 positions better compared to the best parameter combination in RETECS for the NAPFD (Normalized Average Percentage of Faults Detected), RECALL and TTF (Test to Fail) metrics, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
imi发布了新的文献求助10
刚刚
1秒前
pink完成签到,获得积分10
2秒前
巴拉巴拉魔仙堡完成签到,获得积分10
2秒前
害羞听芹发布了新的文献求助10
3秒前
鲤鱼灵阳发布了新的文献求助10
4秒前
curryif发布了新的文献求助10
4秒前
丘比特应助cff采纳,获得50
4秒前
江峰发布了新的文献求助10
4秒前
asir完成签到,获得积分10
4秒前
酷炫的水蓝完成签到,获得积分10
5秒前
TTTHANKS发布了新的文献求助10
5秒前
6秒前
7秒前
英俊的代容完成签到,获得积分10
7秒前
彭于晏应助知知采纳,获得10
8秒前
火奕星完成签到,获得积分10
8秒前
9秒前
迢迢笙箫应助changjing采纳,获得10
9秒前
桐桐应助空曲采纳,获得10
10秒前
SiStdi0完成签到,获得积分10
11秒前
科目三应助江峰采纳,获得10
12秒前
唯梦发布了新的文献求助10
12秒前
修仙应助宝宝熊的熊宝宝采纳,获得10
14秒前
14秒前
dreamland发布了新的文献求助10
14秒前
任性吐司关注了科研通微信公众号
15秒前
15秒前
16秒前
机灵的鹤完成签到 ,获得积分10
17秒前
可爱的函函应助乘风采纳,获得10
17秒前
完美世界应助鹿雅彤采纳,获得10
17秒前
小二郎应助zxw采纳,获得10
18秒前
野原发布了新的文献求助10
18秒前
传奇3应助阿西吧采纳,获得10
18秒前
wsyyls完成签到,获得积分10
19秒前
wdw2501发布了新的文献求助10
19秒前
20秒前
Mingway完成签到,获得积分10
21秒前
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149952
求助须知:如何正确求助?哪些是违规求助? 2800974
关于积分的说明 7842886
捐赠科研通 2458475
什么是DOI,文献DOI怎么找? 1308544
科研通“疑难数据库(出版商)”最低求助积分说明 628524
版权声明 601721