The effect of perceived usefulness of recommender systems and information sources on purchase intention

RSS 推荐系统 相关性(法律) 计算机科学 结构方程建模 独创性 光学(聚焦) 价值(数学) 情报检索 情感(语言学) 万维网 心理学 社会心理学 机器学习 物理 光学 沟通 政治学 创造力 法学
作者
Daniel Mican,Dan‐Andrei Sitar‐Tăut
出处
期刊:Kybernetes [Emerald Publishing Limited]
卷期号:53 (7): 2301-2321 被引量:5
标识
DOI:10.1108/k-08-2022-1145
摘要

Purpose The current study aims to empirically analyze the influence of different information sources, together with the persuasiveness of recommender systems (RSs) on the consumer’s purchase intention (PI). It also expands the research on RSs from the point of view of consumer behavior and psychology, considering perceived usefulness and relevance. In addition, it analyzes how different types of personalized recommendations, along with non-personalized ones, influence PI. Design/methodology/approach The proposed model has been validated using partial least squares structural equation modeling (PLS-SEM), based on the data collected from 597 online shoppers. Findings This study proves that both information search and RSs influence PI, being complementary rather than mutually exclusive. Recommender systems’ findings indicate that the PI is primarily influenced by the perceived relevance of RSs, the information provided by manufacturers and reviews. Moreover, only the influence of the perceived usefulness of personalized recommendations strongly affects PI. Conversely, non-personalized recommendations do not affect PI. Practical implications Developers should focus on increasing the perceived usefulness and relevance of RSs. Thus, they could adopt the hybridization of RSs with the aggregation of both personal shopping behavior and social network contacts. It should integrate information signals from multiple sources to include sentiment extracted from reviews or links to the manufacturer’s page. Furthermore, the recommendation of discounted products must be only for products preferred by customers, because only these influence the PI. Originality/value This research provides a structural model that examines together, for the first time, the influence on the PI of the main RSs and sources of information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云在青天水在瓶完成签到,获得积分20
1秒前
无语的孤丹完成签到,获得积分10
1秒前
小菜鸡发布了新的文献求助10
1秒前
1秒前
小王发布了新的文献求助10
3秒前
乱武发布了新的文献求助10
3秒前
zrc发布了新的文献求助30
4秒前
4秒前
黄文森发布了新的文献求助20
4秒前
涛1118发布了新的文献求助10
5秒前
6秒前
Lucas应助YOGA1115采纳,获得10
6秒前
xielunwen发布了新的文献求助30
7秒前
7秒前
8秒前
吧啦吧啦完成签到,获得积分10
9秒前
隐形曼青应助西子阳采纳,获得10
10秒前
佳佳应助涛1118采纳,获得10
10秒前
完美世界应助涛1118采纳,获得10
10秒前
10秒前
高兴尔冬发布了新的文献求助10
10秒前
满天星辰发布了新的文献求助30
10秒前
10秒前
Lucas应助lin采纳,获得10
11秒前
调皮帽子完成签到,获得积分10
12秒前
12秒前
无花果应助路路通采纳,获得30
13秒前
Tender完成签到,获得积分10
13秒前
尹梓珊发布了新的文献求助10
14秒前
15秒前
Singularity应助自转无风采纳,获得10
16秒前
调皮帽子发布了新的文献求助10
16秒前
16秒前
wpppww发布了新的文献求助10
17秒前
jinghong完成签到 ,获得积分10
17秒前
lianqing发布了新的文献求助10
17秒前
18秒前
做好助焊剂关注了科研通微信公众号
18秒前
今后应助8899采纳,获得10
18秒前
yang发布了新的文献求助10
20秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998499
求助须知:如何正确求助?哪些是违规求助? 3538037
关于积分的说明 11273124
捐赠科研通 3277005
什么是DOI,文献DOI怎么找? 1807250
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810061