The effect of perceived usefulness of recommender systems and information sources on purchase intention

RSS 推荐系统 相关性(法律) 计算机科学 结构方程建模 独创性 光学(聚焦) 价值(数学) 情报检索 情感(语言学) 万维网 心理学 社会心理学 机器学习 光学 法学 物理 沟通 政治学 创造力
作者
Daniel Mican,Dan‐Andrei Sitar‐Tăut
出处
期刊:Kybernetes [Emerald (MCB UP)]
卷期号:53 (7): 2301-2321 被引量:5
标识
DOI:10.1108/k-08-2022-1145
摘要

Purpose The current study aims to empirically analyze the influence of different information sources, together with the persuasiveness of recommender systems (RSs) on the consumer’s purchase intention (PI). It also expands the research on RSs from the point of view of consumer behavior and psychology, considering perceived usefulness and relevance. In addition, it analyzes how different types of personalized recommendations, along with non-personalized ones, influence PI. Design/methodology/approach The proposed model has been validated using partial least squares structural equation modeling (PLS-SEM), based on the data collected from 597 online shoppers. Findings This study proves that both information search and RSs influence PI, being complementary rather than mutually exclusive. Recommender systems’ findings indicate that the PI is primarily influenced by the perceived relevance of RSs, the information provided by manufacturers and reviews. Moreover, only the influence of the perceived usefulness of personalized recommendations strongly affects PI. Conversely, non-personalized recommendations do not affect PI. Practical implications Developers should focus on increasing the perceived usefulness and relevance of RSs. Thus, they could adopt the hybridization of RSs with the aggregation of both personal shopping behavior and social network contacts. It should integrate information signals from multiple sources to include sentiment extracted from reviews or links to the manufacturer’s page. Furthermore, the recommendation of discounted products must be only for products preferred by customers, because only these influence the PI. Originality/value This research provides a structural model that examines together, for the first time, the influence on the PI of the main RSs and sources of information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹿初蓝完成签到,获得积分10
刚刚
QI完成签到,获得积分10
1秒前
xiaodaiduyan完成签到,获得积分20
3秒前
QI发布了新的文献求助10
3秒前
研友_VZG7GZ应助yagami采纳,获得10
4秒前
4秒前
5秒前
景景好完成签到,获得积分10
6秒前
6秒前
yile完成签到,获得积分10
8秒前
格物致知发布了新的文献求助10
10秒前
10秒前
跳跃楼房完成签到 ,获得积分10
11秒前
12秒前
12秒前
迷路安阳完成签到,获得积分10
13秒前
yagami发布了新的文献求助10
16秒前
张青见完成签到,获得积分10
17秒前
遮宁发布了新的文献求助200
17秒前
18秒前
18秒前
完美世界应助左丘傲菡采纳,获得10
19秒前
19秒前
格物致知完成签到,获得积分10
19秒前
19秒前
丽莉发布了新的文献求助10
19秒前
sissi225发布了新的文献求助10
19秒前
Vce April完成签到,获得积分10
20秒前
Ava应助甲乙丙丁采纳,获得10
20秒前
陶醉觅夏发布了新的文献求助100
20秒前
lym97完成签到 ,获得积分10
23秒前
谭久久完成签到,获得积分10
23秒前
YH发布了新的文献求助10
23秒前
ygl0217发布了新的文献求助10
24秒前
25秒前
25秒前
25秒前
李佳倩完成签到 ,获得积分10
25秒前
芝麻汤圆完成签到,获得积分10
27秒前
子车茗应助鸡鱼蚝采纳,获得10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299860
求助须知:如何正确求助?哪些是违规求助? 2934706
关于积分的说明 8470318
捐赠科研通 2608238
什么是DOI,文献DOI怎么找? 1424137
科研通“疑难数据库(出版商)”最低求助积分说明 661847
邀请新用户注册赠送积分活动 645578