Synergistic Utilization of a CeO2-Anchored Bifunctionalized Metal–Organic Framework in a Polymer Nanocomposite toward Achieving High Power Density and Durability of PEMFC

质子交换膜燃料电池 材料科学 Nafion公司 化学工程 纳米复合材料 耐久性 电导率 磺酸 催化作用 质子输运 聚合物 复合材料 化学 高分子化学 有机化学 电极 生物化学 物理化学 工程类 电化学
作者
Yuting Duan,Yang Pang,Binghui Liu,Liming Wu,Xinyue Hu,Qijia Li,Chengji Zhao
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:11 (13): 5270-5283 被引量:36
标识
DOI:10.1021/acssuschemeng.3c00046
摘要

The free radicals produced during the long-term operation of fuel cells can accelerate the chemical degradation of the proton exchange membrane (PEM). In the present work, the widely used free radical scavenger CeO2 was anchored on amino-functionalized metal–organic frameworks, and flexible alkyl sulfonic acid side chains were tethered onto the surface of inorganic nanoparticles. The prepared CeO2-anchored bifunctionalized metal–organic framework (CeO2-MNCS) was used as a promising synergistic filler to modify the Nafion matrix for addressing the detrimental effect of pristine CeO2 on the performance and durability of PEMs, including decreased proton conductivity and the migration problem of CeO2. The obtained hybrid membranes exhibited a high proton conductivity up to 0.239 S cm–1, enabling them to achieve a high power density of 591.47 mW cm–2 in a H2/air PEMFC single cell, almost 1.59 times higher than that of recast Nafion. After 115 h of acceleration testing, the OCV decay ratio of the hybrid membrane was decreased to 0.54 mV h–1, which was significantly lower than that of recast Nafion (2.18 mV h–1). The hybrid membrane still maintained high power density, low hydrogen crossover, and unabated catalytic activity of the catalyst layer after the durability test. This study provides an effective one-stone-two-birds strategy to develop highly durable PEMs by immobilizing CeO2 without sacrificing proton conductivity, allowing for the realization of improvement on the performance and sustained durability of PEMFC simultaneously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣遥完成签到,获得积分10
刚刚
77发布了新的文献求助10
刚刚
华仔应助柔弱雅彤采纳,获得10
1秒前
烟花应助柔弱雅彤采纳,获得10
1秒前
DMTloveforever完成签到,获得积分10
1秒前
陶醉的冷梅完成签到,获得积分10
3秒前
22222发布了新的文献求助20
3秒前
btyjs完成签到,获得积分10
3秒前
哈哈发布了新的文献求助10
4秒前
科研通AI6应助草学研究采纳,获得10
5秒前
Ran发布了新的文献求助10
6秒前
鲁万仇发布了新的文献求助10
6秒前
WYW发布了新的文献求助10
8秒前
9秒前
JamesPei应助苗条的一兰采纳,获得20
10秒前
研友_VZG7GZ应助林鑫璐采纳,获得10
11秒前
Tokgo完成签到,获得积分10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
Jasper应助singlelx89采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
13秒前
13秒前
Orange应助科研通管家采纳,获得10
13秒前
子车茗应助科研通管家采纳,获得30
13秒前
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
子车茗应助科研通管家采纳,获得30
13秒前
852应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226663
求助须知:如何正确求助?哪些是违规求助? 4398072
关于积分的说明 13688295
捐赠科研通 4262686
什么是DOI,文献DOI怎么找? 2339276
邀请新用户注册赠送积分活动 1336647
关于科研通互助平台的介绍 1292640