2D carbon nitrides: Regulating non-metal boron-doped C3N5 for elucidating the mechanism of wide pH range photocatalytic hydrogen evolution reaction

光催化 掺杂剂 催化作用 材料科学 制氢 分解水 兴奋剂 碳纤维 带隙 密度泛函理论 无机化学 化学 化学物理 光化学 计算化学 有机化学 光电子学 复合数 复合材料
作者
Sue‐Faye Ng,Xingzhu Chen,Joel Jie Foo,Mo Xiong,Wee‐Jun Ong
出处
期刊:Chinese Journal of Catalysis [China Science Publishing & Media Ltd.]
卷期号:47: 150-160 被引量:36
标识
DOI:10.1016/s1872-2067(23)64417-1
摘要

Solar-driven water splitting for green hydrogen production has been prospected as an auspicious technology to achieve sustainable energy generation by shifting towards renewable and zero-carbon emission fuels. Recently, N-rich C3N5 allotropes are emerging to surpass the intrinsic drawbacks of g-C3N4, which are the rapid recombination of photogenerated charge carriers and poor visible light absorption, resulting in low photocatalytic efficiency. In this study, density functional theory calculation was conducted on the pristine C3N5 and boron-doped C3N5 systems to study the effect of boron atom on the electronic and optical properties, as well as the hydrogen evolution reaction mechanism. The boron-dopants were introduced in C3N5 through substitutional or interstitial doping. It is indicated that the incorporation of boron atoms in the C3N5 matrix is thermodynamically favorable. A band gap narrowing of 0.6 eV was observed after the N3-site nitrogen atom was replaced by a boron atom (BN3-C3N5). Compared to pristine C3N5, the boron-dopant also reduced the reaction energies of potential determining step of the HER pathway in both acid and alkaline media through the Volmer-Tafel and Volmer-Heyrovsky mechanism. The Gibbs free energy of hydrogen adsorption (ΔGH*) of BN3-C3N5 (0.11 eV) is comparable to the benchmark Pt/C catalyst (–0.09 eV). These theoretical results allude to the elucidated catalytic performance of non-metal doped carbon nitrides that can be applied to future experimental and computational analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalala发布了新的文献求助10
刚刚
鹿鸣完成签到 ,获得积分10
刚刚
2秒前
Clover完成签到 ,获得积分10
2秒前
酸橘完成签到,获得积分10
2秒前
3秒前
3秒前
FashionBoy应助朴实的小萱采纳,获得10
3秒前
傲娇紫烟完成签到,获得积分10
3秒前
JamesPei应助sgssm采纳,获得10
4秒前
4秒前
哇咔咔完成签到 ,获得积分10
4秒前
Chelry发布了新的文献求助10
4秒前
paojiao不辣发布了新的文献求助10
4秒前
慕青应助MJ采纳,获得200
5秒前
秋風完成签到,获得积分10
5秒前
上官若男应助casperzwj采纳,获得10
5秒前
5秒前
5秒前
FashionBoy应助读者采纳,获得20
6秒前
6秒前
英姑应助赤木晴子0922采纳,获得10
6秒前
思源应助纯真的德地采纳,获得10
7秒前
樱桃猴子发布了新的文献求助10
7秒前
7秒前
chen完成签到,获得积分10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
wzy发布了新的文献求助20
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
8秒前
苏卿应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
VDC应助科研通管家采纳,获得30
8秒前
大模型应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
研究僧完成签到,获得积分10
8秒前
朝天应助科研通管家采纳,获得10
8秒前
九星应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246