Drug-target interaction prediction by integrating heterogeneous information with mutual attention network

相互信息 计算机科学 交互信息 药品 数据科学 人工智能 药理学 医学 数学 统计
作者
Yuanyuan Zhang,Yingdong Wang,C. Y. Wu,Lingmin Zhana,Aoyi Wang,Chaoyang Cheng,Jinzhong Zhao,Wuxia Zhang,Jian‐Xin Chen,Peng Li
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.03516
摘要

Identification of drug-target interactions is an indispensable part of drug discovery. While conventional shallow machine learning and recent deep learning methods based on chemogenomic properties of drugs and target proteins have pushed this prediction performance improvement to a new level, these methods are still difficult to adapt to novel structures. Alternatively, large-scale biological and pharmacological data provide new ways to accelerate drug-target interaction prediction. Here, we propose DrugMAN, a deep learning model for predicting drug-target interaction by integrating multiplex heterogeneous functional networks with a mutual attention network (MAN). DrugMAN uses a graph attention network-based integration algorithm to learn network-specific low-dimensional features for drugs and target proteins by integrating four drug networks and seven gene/protein networks, respectively. DrugMAN then captures interaction information between drug and target representations by a mutual attention network to improve drug-target prediction. DrugMAN achieves the best prediction performance under four different scenarios, especially in real-world scenarios. DrugMAN spotlights heterogeneous information to mine drug-target interactions and can be a powerful tool for drug discovery and drug repurposing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jry发布了新的文献求助10
1秒前
在水一方应助believelc采纳,获得10
1秒前
1秒前
于洋完成签到 ,获得积分10
2秒前
hsk完成签到,获得积分10
2秒前
lshl2000发布了新的文献求助10
3秒前
3秒前
3秒前
真实的依白应助大意的衣采纳,获得10
5秒前
英姑应助钱多多采纳,获得10
7秒前
tangzelun完成签到,获得积分10
8秒前
Bo完成签到,获得积分20
9秒前
bb发布了新的文献求助10
10秒前
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
聂成协完成签到,获得积分20
11秒前
pluto应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
夏宇完成签到 ,获得积分10
11秒前
完美世界应助科研通管家采纳,获得20
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
甜甜玫瑰应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
寻道图强应助科研通管家采纳,获得30
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
寻道图强应助科研通管家采纳,获得30
12秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得30
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
bbecky发布了新的文献求助10
14秒前
14秒前
14秒前
研友_VZG7GZ应助yzbj采纳,获得10
14秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056002
求助须知:如何正确求助?哪些是违规求助? 2712582
关于积分的说明 7432387
捐赠科研通 2357594
什么是DOI,文献DOI怎么找? 1248929
科研通“疑难数据库(出版商)”最低求助积分说明 606823
版权声明 596195