聚酰胺
共聚物
表征(材料科学)
碳链
高分子化学
链条(单位)
碳纤维
材料科学
长链
化学工程
化学
聚合物
有机化学
高分子科学
复合材料
纳米技术
工程类
物理
复合数
天文
作者
Chunxiao Yu,Feng Jiang,Zheng Zhang,Xin Li,San‐Qiang Shi,Ting Li,Dongyue Liu,Zhishan Hu
标识
DOI:10.1080/10601325.2024.2332352
摘要
Polyamide6 is a vital high-performance commercial engineering thermoplastics polymer, but it exhibits low toughness and high hydrophilicity. To improve its disadvantages, the facile melt co-polycondensation method was proposed to synthesis a novel polyamides 6-1012 copolymers (PA6-1012) with different PA1012 salt loading. Experimental results show that the melting temperature (Tm), crystallization temperature(Tc), melting enthalpy(ΔHm), and crystallinity(Xc) decreased with the increase of PA1012 loading in the copolyamides. The size and number of the copolymers' spherical crystals decrease by the additions of 1012 units, but its crystalline structure and thermal stabilities does not be affected. The hydrophilicity decreases with increasing PA1012 content from 0 to 28 wt% and the highest contact angle value at the PA1012 loading of 28 wt% is 96°, which can be considered as a surface hydrophobic material. Low temperature (−5 °C)mechanical test results reveal that loss in tensile strength is exchanged for a considerable increase in the strain at break. The impact strength of the PA6-1012 copolyamides is notably enhanced by increasing the PA1012 loading in different test temperatures due to the increase of molecular chain flexibility, indicating that the copolyamindes exhibit enough toughness to suitably apply in low temperature environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI