Enhancing predictive capabilities in data-driven dynamical modeling with automatic differentiation: Koopman and neural ODE approaches

动态模态分解 可见的 颂歌 常微分方程 吸引子 状态空间 动力系统理论 操作员(生物学) 自动微分 动力系统(定义) 计算机科学 代表(政治) 数学 应用数学 微分方程 算法 计算 数学分析 物理 机器学习 生物化学 统计 基因 政治 抑制因子 政治学 化学 法学 转录因子 量子力学
作者
C. Ricardo Constante-Amores,Alec J. Linot,Michael D. Graham
出处
期刊:Chaos [American Institute of Physics]
卷期号:34 (4) 被引量:4
标识
DOI:10.1063/5.0180415
摘要

Data-driven approximations of the Koopman operator are promising for predicting the time evolution of systems characterized by complex dynamics. Among these methods, the approach known as extended dynamic mode decomposition with dictionary learning (EDMD-DL) has garnered significant attention. Here, we present a modification of EDMD-DL that concurrently determines both the dictionary of observables and the corresponding approximation of the Koopman operator. This innovation leverages automatic differentiation to facilitate gradient descent computations through the pseudoinverse. We also address the performance of several alternative methodologies. We assess a “pure” Koopman approach, which involves the direct time-integration of a linear, high-dimensional system governing the dynamics within the space of observables. Additionally, we explore a modified approach where the system alternates between spaces of states and observables at each time step—this approach no longer satisfies the linearity of the true Koopman operator representation. For further comparisons, we also apply a state-space approach (neural ordinary differential equations). We consider systems encompassing two- and three-dimensional ordinary differential equation systems featuring steady, oscillatory, and chaotic attractors, as well as partial differential equations exhibiting increasingly complex and intricate behaviors. Our framework significantly outperforms EDMD-DL. Furthermore, the state-space approach offers superior performance compared to the “pure” Koopman approach where the entire time evolution occurs in the space of observables. When the temporal evolution of the Koopman approach alternates between states and observables at each time step, however, its predictions become comparable to those of the state-space approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxx发布了新的文献求助10
刚刚
刚刚
Natasha发布了新的文献求助10
1秒前
1秒前
情怀应助111采纳,获得30
1秒前
小杨弟弟发布了新的文献求助10
1秒前
1秒前
cclyfan完成签到,获得积分10
2秒前
蘑菇完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助30
3秒前
3秒前
刘旭晴发布了新的文献求助10
3秒前
SciGPT应助瑜衡采纳,获得10
3秒前
4秒前
BowieHuang应助1234sxcv采纳,获得10
4秒前
66发布了新的文献求助10
5秒前
smg1307完成签到 ,获得积分10
5秒前
6秒前
FashionBoy应助嚣张的爆米花采纳,获得10
6秒前
7秒前
斯文败类应助黄奥龙采纳,获得10
7秒前
晴天发布了新的文献求助10
7秒前
wind关注了科研通微信公众号
8秒前
8秒前
可爱的函函应助春深半夏采纳,获得10
8秒前
Adc应助fangyuan采纳,获得20
9秒前
富贵李发布了新的文献求助10
9秒前
9秒前
ding应助宇月幸成采纳,获得10
9秒前
9秒前
Azhou完成签到,获得积分10
9秒前
可爱小铭完成签到,获得积分10
9秒前
FAFA发布了新的文献求助10
10秒前
11秒前
期辰完成签到,获得积分10
11秒前
FFFFF发布了新的文献求助10
12秒前
小王发布了新的文献求助10
12秒前
13秒前
可耐的妙芙完成签到,获得积分20
13秒前
chris应助路夜白采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721428
求助须知:如何正确求助?哪些是违规求助? 5265735
关于积分的说明 15294026
捐赠科研通 4870760
什么是DOI,文献DOI怎么找? 2615607
邀请新用户注册赠送积分活动 1565381
关于科研通互助平台的介绍 1522454