Enhancing predictive capabilities in data-driven dynamical modeling with automatic differentiation: Koopman and neural ODE approaches

动态模态分解 可见的 颂歌 常微分方程 吸引子 状态空间 动力系统理论 操作员(生物学) 自动微分 动力系统(定义) 计算机科学 代表(政治) 数学 应用数学 微分方程 算法 计算 数学分析 物理 机器学习 抑制因子 法学 化学 生物化学 量子力学 政治学 转录因子 统计 政治 基因
作者
C. Ricardo Constante-Amores,Alec J. Linot,Michael D. Graham
出处
期刊:Chaos [American Institute of Physics]
卷期号:34 (4) 被引量:4
标识
DOI:10.1063/5.0180415
摘要

Data-driven approximations of the Koopman operator are promising for predicting the time evolution of systems characterized by complex dynamics. Among these methods, the approach known as extended dynamic mode decomposition with dictionary learning (EDMD-DL) has garnered significant attention. Here, we present a modification of EDMD-DL that concurrently determines both the dictionary of observables and the corresponding approximation of the Koopman operator. This innovation leverages automatic differentiation to facilitate gradient descent computations through the pseudoinverse. We also address the performance of several alternative methodologies. We assess a “pure” Koopman approach, which involves the direct time-integration of a linear, high-dimensional system governing the dynamics within the space of observables. Additionally, we explore a modified approach where the system alternates between spaces of states and observables at each time step—this approach no longer satisfies the linearity of the true Koopman operator representation. For further comparisons, we also apply a state-space approach (neural ordinary differential equations). We consider systems encompassing two- and three-dimensional ordinary differential equation systems featuring steady, oscillatory, and chaotic attractors, as well as partial differential equations exhibiting increasingly complex and intricate behaviors. Our framework significantly outperforms EDMD-DL. Furthermore, the state-space approach offers superior performance compared to the “pure” Koopman approach where the entire time evolution occurs in the space of observables. When the temporal evolution of the Koopman approach alternates between states and observables at each time step, however, its predictions become comparable to those of the state-space approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
以七完成签到 ,获得积分10
1秒前
沉默碧琴完成签到,获得积分20
2秒前
2秒前
于雅霏完成签到,获得积分10
3秒前
kai完成签到,获得积分20
4秒前
6秒前
shuyingRen完成签到,获得积分10
10秒前
科研通AI2S应助李天王采纳,获得10
10秒前
chenzhi发布了新的文献求助10
11秒前
Owen应助Robot采纳,获得10
11秒前
完美世界应助山茱萸采纳,获得10
13秒前
弹指一挥间完成签到,获得积分10
16秒前
12完成签到,获得积分10
18秒前
所所应助chenzhi采纳,获得10
19秒前
19秒前
星辰大海应助桃桃桃桃采纳,获得30
21秒前
山茱萸完成签到,获得积分10
22秒前
山茱萸发布了新的文献求助10
25秒前
Verity应助DIUI采纳,获得10
28秒前
研友_VZG7GZ应助lucas采纳,获得10
30秒前
泥豪泥嚎完成签到 ,获得积分10
32秒前
Gauss完成签到,获得积分0
33秒前
zhangzf完成签到,获得积分10
34秒前
超级桂花糕完成签到 ,获得积分10
35秒前
双青豆完成签到 ,获得积分10
36秒前
drfang完成签到 ,获得积分10
36秒前
yangdoudou完成签到,获得积分10
37秒前
38秒前
40秒前
佛砸Inter发布了新的文献求助10
43秒前
45秒前
爱吃糖果的小象完成签到,获得积分10
45秒前
t忒对发布了新的文献求助10
46秒前
可乐不加冰完成签到 ,获得积分0
50秒前
51秒前
lu完成签到,获得积分10
55秒前
55秒前
Hanoi347应助科研通管家采纳,获得10
58秒前
小蘑菇应助科研通管家采纳,获得10
58秒前
在水一方应助科研通管家采纳,获得10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560339
求助须知:如何正确求助?哪些是违规求助? 4645494
关于积分的说明 14675277
捐赠科研通 4586593
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490109
关于科研通互助平台的介绍 1460915