Enhancing predictive capabilities in data-driven dynamical modeling with automatic differentiation: Koopman and neural ODE approaches

动态模态分解 可见的 颂歌 常微分方程 吸引子 状态空间 动力系统理论 操作员(生物学) 自动微分 动力系统(定义) 计算机科学 代表(政治) 数学 应用数学 微分方程 算法 计算 数学分析 物理 机器学习 抑制因子 法学 化学 生物化学 量子力学 政治学 转录因子 统计 政治 基因
作者
C. Ricardo Constante-Amores,Alec J. Linot,Michael D. Graham
出处
期刊:Chaos [American Institute of Physics]
卷期号:34 (4) 被引量:4
标识
DOI:10.1063/5.0180415
摘要

Data-driven approximations of the Koopman operator are promising for predicting the time evolution of systems characterized by complex dynamics. Among these methods, the approach known as extended dynamic mode decomposition with dictionary learning (EDMD-DL) has garnered significant attention. Here, we present a modification of EDMD-DL that concurrently determines both the dictionary of observables and the corresponding approximation of the Koopman operator. This innovation leverages automatic differentiation to facilitate gradient descent computations through the pseudoinverse. We also address the performance of several alternative methodologies. We assess a “pure” Koopman approach, which involves the direct time-integration of a linear, high-dimensional system governing the dynamics within the space of observables. Additionally, we explore a modified approach where the system alternates between spaces of states and observables at each time step—this approach no longer satisfies the linearity of the true Koopman operator representation. For further comparisons, we also apply a state-space approach (neural ordinary differential equations). We consider systems encompassing two- and three-dimensional ordinary differential equation systems featuring steady, oscillatory, and chaotic attractors, as well as partial differential equations exhibiting increasingly complex and intricate behaviors. Our framework significantly outperforms EDMD-DL. Furthermore, the state-space approach offers superior performance compared to the “pure” Koopman approach where the entire time evolution occurs in the space of observables. When the temporal evolution of the Koopman approach alternates between states and observables at each time step, however, its predictions become comparable to those of the state-space approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
庾芯发布了新的文献求助10
1秒前
xyb关闭了xyb文献求助
1秒前
YuanF发布了新的文献求助20
1秒前
小康完成签到,获得积分10
2秒前
2秒前
充电宝应助就晚安喽采纳,获得10
3秒前
3秒前
langentcloud发布了新的文献求助10
3秒前
鱼e完成签到,获得积分10
4秒前
tian发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
7秒前
小康发布了新的文献求助10
8秒前
9秒前
11秒前
WUq完成签到,获得积分10
12秒前
littleE完成签到 ,获得积分0
13秒前
庾芯完成签到,获得积分10
13秒前
脑洞疼应助石头采纳,获得10
13秒前
16秒前
Jasper应助知性的友易采纳,获得10
17秒前
赘婿应助称心的菲鹰采纳,获得10
18秒前
单纯的小土豆完成签到 ,获得积分10
19秒前
20秒前
22秒前
lailai完成签到,获得积分10
22秒前
wen发布了新的文献求助10
23秒前
23秒前
搜集达人应助weiyi采纳,获得10
23秒前
雷培发布了新的文献求助80
23秒前
25秒前
wcy完成签到,获得积分20
25秒前
26秒前
27秒前
科研通AI5应助向阳而生采纳,获得10
27秒前
淡淡代玉发布了新的文献求助20
29秒前
花火易逝发布了新的文献求助10
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997687
求助须知:如何正确求助?哪些是违规求助? 3537226
关于积分的说明 11271044
捐赠科研通 3276377
什么是DOI,文献DOI怎么找? 1806965
邀请新用户注册赠送积分活动 883609
科研通“疑难数据库(出版商)”最低求助积分说明 809975