Superconductivity induced by ionized σ-bond at 10 GPa

材料科学 超导电性 电离 债券 凝聚态物理 结晶学 工程物理 离子 业务 物理 量子力学 化学 财务
作者
Defang Duan,Yanhui Liu,Zhao Liu,Tian Cui
出处
期刊:Materials Today Physics [Elsevier]
卷期号:43: 101403-101403
标识
DOI:10.1016/j.mtphys.2024.101403
摘要

Discovering high-temperature superconductors under low pressures and elucidating the underlying critical factors governing superconductivity are central issues in condensed matter physics. Here, we developed a strategy for the metallization of σ-bonds through incorporating NH3-units into the filled f-shell Lu-lattice and obtained a Luδ+ (NH3)4σ− hydride to investigate the potential high-temperature superconductivity. Based on the density-functional theory calculations, our proposed I-43m-Luδ+ (NH3)4σ− phase exhibits a Tc of 33.44 K at 10 GPa. Further analyses unveil that the Tc is attributed to strong electron-phonon coupling (EPC), which originated from the electron-phonon matrix element primarily driven by H–N–H bending and twisting vibrations, and Fermi surface nesting induced softening of optical phonons to scatter itinerant electrons on phonon-coupling bands to form Cooper pairs. Importantly, the emergence of phonon-coupling bands is mainly dependent on the ionization of sp3-hybridized σ-bonds within NH3, resulting in the manifestation of metallicity. Due to the enhanced ionization of σ-bands and strengthened interatomic coupling effect with pressurization, the Tc is further enhanced to 130 K. Our study offers novel insights towards the realization of phonon-mediated high-temperature superconductivity at comparatively low-pressures and highlights the potential for achieving high-Tc in filled f-shell metal hydrides through strategic engineering of metallized σ-bonds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sara发布了新的文献求助10
刚刚
刚刚
干饭闪电狼完成签到,获得积分10
1秒前
YUZU完成签到,获得积分10
2秒前
123完成签到,获得积分10
3秒前
pcx完成签到,获得积分10
3秒前
phd完成签到,获得积分10
4秒前
4秒前
曹志毅完成签到,获得积分10
4秒前
mito发布了新的文献求助10
5秒前
无悔呀发布了新的文献求助10
5秒前
6秒前
君君发布了新的文献求助10
6秒前
Yang完成签到,获得积分10
7秒前
风雨完成签到,获得积分10
7秒前
7秒前
8秒前
彭于晏应助小西采纳,获得30
8秒前
可爱的函函应助布布采纳,获得10
9秒前
10秒前
轩辕德地发布了新的文献求助10
10秒前
nine发布了新的文献求助30
10秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
11秒前
JamesPei应助小敦采纳,获得10
11秒前
今非发布了新的文献求助10
11秒前
李健的小迷弟应助通~采纳,获得30
11秒前
11秒前
11秒前
fanfan44390发布了新的文献求助10
11秒前
Zhang完成签到,获得积分10
12秒前
小二郎应助小田采纳,获得10
13秒前
13秒前
隐形曼青应助liike采纳,获得10
13秒前
phd发布了新的文献求助10
13秒前
13秒前
dingdong发布了新的文献求助30
13秒前
Orange应助清秀的语山采纳,获得50
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794