TOMGPT: Reliable Text-Only Training Approach for Cost-Effective Multi-modal Large Language Model

计算机科学 情态动词 培训(气象学) 自然语言处理 人工智能 机器学习 地理 化学 气象学 高分子化学
作者
Yunkai Chen,Qimeng Wang,Shiwei Wu,Yan Gao,Tong Xu,Yao Hu
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (7): 1-19 被引量:5
标识
DOI:10.1145/3654674
摘要

Multi-modal large language models (MLLMs), such as GPT-4, exhibit great comprehension capabilities on human instruction, as well as zero-shot ability on new downstream multi-modal tasks. To integrate the different modalities within a unified embedding space, previous MLLMs attempted to conduct visual instruction tuning with massive and high-quality image-text pair data, which requires substantial costs in data collection and training resources. In this article, we propose TOMGPT (Text-Only training Multi-modal GPT), a cost-effective MLLM tuned solely on easily accessible text data with much fewer resources. Along with pre-trained visual-linguistic coupled modality space (e.g., CLIP and ALIGN model), a text-only training strategy is devised to further project the aligned multi-modal latent space to that of LLM, endowing the LLM with visual comprehension capabilities in an efficient manner. Instead of enormous image-text training data required by previous MLLMs, we find that TOMGPT can be well-tuned with fewer yet diverse GPT-generated free-form text data, as we establish the semantic connection between LLM and pre-trained vision-language model. A quantitative evaluation is conducted on both MME and LVLM, which are recently released and extensively utilized MLLM benchmarks. The experiments reveal that TOMGPT achieved reliable performance compared to numerous models trained on a large amount of image-text pair data. Case studies are also presented, demonstrating TOMGPT’s broad understanding and dialogue capabilities across diverse image categories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助lvsehx采纳,获得10
1秒前
1秒前
2011发布了新的文献求助10
1秒前
2秒前
杳鸢应助lllllll采纳,获得20
3秒前
耶格尔发布了新的文献求助10
4秒前
我是老大应助HEANZ采纳,获得10
4秒前
尊敬曼岚发布了新的文献求助10
4秒前
鱼蛋超人发布了新的文献求助10
4秒前
5秒前
Owen应助千颂采纳,获得30
5秒前
杰杰子完成签到,获得积分10
5秒前
花粉过敏发布了新的文献求助10
6秒前
朴素的啤酒应助han采纳,获得10
6秒前
yangyangyang完成签到,获得积分10
6秒前
卓然不凡发布了新的文献求助10
6秒前
6秒前
7秒前
在水一方应助微笑的语芙采纳,获得10
7秒前
Xenia发布了新的文献求助10
8秒前
8秒前
稀有人类完成签到 ,获得积分20
8秒前
8秒前
yangyangyang发布了新的文献求助30
9秒前
pcy发布了新的文献求助10
10秒前
心台应助萱萱采纳,获得10
11秒前
12秒前
田様应助无辜不言采纳,获得10
12秒前
13秒前
13秒前
不上课不行完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
JamesPei应助江竹兰采纳,获得10
14秒前
Xenia完成签到,获得积分10
15秒前
杳鸢应助lllllll采纳,获得20
15秒前
15秒前
15秒前
15秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218980
求助须知:如何正确求助?哪些是违规求助? 2867998
关于积分的说明 8159022
捐赠科研通 2535031
什么是DOI,文献DOI怎么找? 1367402
科研通“疑难数据库(出版商)”最低求助积分说明 645052
邀请新用户注册赠送积分活动 618233