Recursive label attention network for nested named entity recognition

计算机科学 人工智能 命名实体识别 模式识别(心理学) 自然语言处理 任务(项目管理) 管理 经济
作者
Hong-Jin Kim,Harksoo Kim
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123657-123657
标识
DOI:10.1016/j.eswa.2024.123657
摘要

Nested named entity recognition (NER) has been mainly studied by recognizing inner entities first, then outer entities, or vice versa, depending on the nesting level. However, the previous models on nested NER do not deal with the data sparseness problems of deep nested entities (i.e., insufficiency of training data for deeper nested entities) and the error propagation problems between nested entities (i.e., accumulation of errors caused by inner entities or outer entities). To alleviate the data sparseness problems, we propose a recursive label attention network. In contrast to previous models, the proposed model explicitly reflects the nested level and effectively re-uses lower level label information through level-reflected label embeddings. To counteract error propagation in the recursive architecture, we propose an inner entity pretraining strategy in which the proposed model is sequentially trained from lower to higher levels. In experiments, we use task-specific metrics for nested NER, unlike the evaluation metrics used in previous studies. The experimental results show that the proposed model is particularly effective in cases where entities of the same type were nested. In addition, it showed high F1-scores even when named entities are deeply nested. This fact reveals that our proposed model is effective for nest NER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mercurius完成签到,获得积分10
刚刚
刚刚
刚刚
ganzhongxin完成签到,获得积分10
刚刚
12356完成签到,获得积分10
刚刚
1秒前
今后应助白华苍松采纳,获得10
1秒前
跳跃乘风发布了新的文献求助20
1秒前
不舍天真发布了新的文献求助20
2秒前
坚强的樱发布了新的文献求助10
2秒前
温暖以蓝发布了新的文献求助10
2秒前
2秒前
wanci应助幸福胡萝卜采纳,获得10
2秒前
2秒前
Ych发布了新的文献求助10
2秒前
gjy完成签到,获得积分10
3秒前
vision完成签到,获得积分10
3秒前
小小发布了新的文献求助10
3秒前
Katie完成签到,获得积分10
3秒前
LT发布了新的文献求助10
3秒前
4秒前
科研人完成签到,获得积分10
4秒前
FashionBoy应助彭彭采纳,获得10
4秒前
赤邪发布了新的文献求助10
5秒前
Owen应助lwei采纳,获得10
5秒前
shelly0621给shelly0621的求助进行了留言
5秒前
青木蓝完成签到,获得积分10
5秒前
5秒前
迅速泽洋完成签到,获得积分10
6秒前
dan1029完成签到,获得积分10
6秒前
小王完成签到,获得积分10
6秒前
李繁蕊发布了新的文献求助10
6秒前
7秒前
7秒前
隐形曼青应助hjj采纳,获得10
7秒前
susu完成签到,获得积分10
8秒前
9秒前
caicai发布了新的文献求助10
9秒前
无情的菲鹰完成签到,获得积分10
9秒前
兔兔完成签到 ,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762