已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

GEHGAN: CircRNA–disease association prediction via graph embedding and heterogeneous graph attention network

嵌入 相似性(几何) 图形 计算机科学 语义相似性 算法 机器学习 数学 人工智能 理论计算机科学 图像(数学)
作者
Yuehao Wang,Pengli Lu
出处
期刊:Computational Biology and Chemistry [Elsevier]
卷期号:110: 108079-108079
标识
DOI:10.1016/j.compbiolchem.2024.108079
摘要

There is growing proof suggested that circRNAs play a crucial function in diverse important biological reactions related to human diseases. Within the area of biochemistry, a massive range of wet experiments have been carried out to find out the connections of circRNA-disease in recent years. Since wet experiments are expensive and laborious, nowadays, calculation-based solutions have increasingly attracted the attention of researchers. However, the performance of these methods is restricted due to the inability to balance the distribution among various types of nodes. To remedy the problem, we present a novel computational method called GEHGAN to forecast the new relationships in this research, leveraging graph embedding and heterogeneous graph attention networks. Firstly, we calculate circRNA sequences similarity, circRNA RBP similarity, disease semantic similarity and corresponding GIP kernel similarity to construct heterogeneous graph. Secondly, a graph embedding method using random walks with jump and stay strategies is applied to obtain the preliminary embeddings of circRNAs and diseases, greatly improving the performance of the model. Thirdly, a multi-head graph attention network is employed to further update the embeddings, followed by the employment of the MLP as a predictor. As a result, the five-fold cross-validation indicates that GEHGAN achieves an outstanding AUC score of 0.9829 and an AUPR value of 0.9815 on the CircR2Diseasev2.0 database, and case studies on osteosarcoma, gastric and colorectal neoplasms further confirm the model's efficacy at identifying circRNA-disease correlations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunran0完成签到 ,获得积分10
刚刚
子凡完成签到,获得积分10
刚刚
刚刚
2秒前
2秒前
zhuj11应助子凡采纳,获得10
3秒前
6秒前
Candice发布了新的文献求助10
6秒前
jejms发布了新的文献求助10
7秒前
8秒前
9秒前
汉堡包应助老孟采纳,获得10
11秒前
桐桐应助费老三采纳,获得10
11秒前
11秒前
隐形曼青应助jejms采纳,获得10
11秒前
12秒前
小鱼干发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
领导范儿应助wyx采纳,获得10
13秒前
14秒前
14秒前
Raince发布了新的文献求助10
16秒前
今后应助龙乐采纳,获得10
17秒前
费老三发布了新的文献求助10
17秒前
完美世界应助tingting采纳,获得10
18秒前
18秒前
19秒前
19秒前
19秒前
枯叶蝶发布了新的文献求助20
19秒前
21秒前
21秒前
自由宛筠发布了新的文献求助10
22秒前
22秒前
xuan发布了新的文献求助10
22秒前
23秒前
乐乐应助pzh采纳,获得10
24秒前
劲秉应助swordlee采纳,获得30
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555447
求助须知:如何正确求助?哪些是违规求助? 3131097
关于积分的说明 9390003
捐赠科研通 2830593
什么是DOI,文献DOI怎么找? 1556091
邀请新用户注册赠送积分活动 726459
科研通“疑难数据库(出版商)”最低求助积分说明 715756