Mussel-Inspired Self-Adhesive and Tough Hydrogels for Effectively Cooling Solar Cells and Thermoelectric Generators

材料科学 自愈水凝胶 胶粘剂 热电发电机 热电效应 纳米技术 自粘 复合材料 高分子化学 物理 图层(电子) 热力学
作者
Jialing Li,Xiaojiang Mu,Jianhua Zhou,Sijing Zhu,Yangfan Gao,Xiaoyang Wang,Junliang Chen,Lei Miao
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (15): 18898-18907 被引量:6
标识
DOI:10.1021/acsami.4c00710
摘要

Adhesive hydrogel-based evaporative cooling, which necessitates no electricity input, holds promise for reducing energy consumption in thermal management. Herein, inspired by the surface attachment of mussel adhesive proteins via abundant dynamic covalent bonds and noncovalent interactions, we propose a facile strategy to fabricate a self-adhesive cooling hydrogel (Li-AA-TA-PAM) using a copolymer of acrylamide (AM) and acrylic acid (AA) as the primary framework. The monomers formed hydrogen bonds between their carboxyl and amide groups, while tannic acid (TA), rich in catechol groups, enhances the adhesion of the hydrogel through hydrogen bonding. The hydrogel demonstrated strong adhesion to various material surfaces, including plastic, ceramic, glass, and metal. Even under high-speed rotation, it still maintains robust adhesion. The adhesion strength of the Li-AA-TA-PAM hydrogel to aluminum foil reached an impressive value of 296.875 kPa. Interestingly, the excellent contact caused by robust adhesion accelerates heat transfer, resulting in a rapid cooling performance, which mimics the perspiration of mammals. Lithium bromide (LiBr) with hydroactively sorptive sites is introduced to enhance sorption kinetics, thereby extending the effective cooling period. Consequently, the operation temperature of commercial polycrystalline silicon solar cells was reduced by 16 °C under an illumination of 1 kW m–2, and the corresponding efficiency of energy conversion was increased by 1.14%, thereby enhancing the output properties and life span of solar cells. The strategy demonstrates the potential for refrigeration applications using viscous gels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凝心发布了新的文献求助10
1秒前
2秒前
网易乐完成签到,获得积分20
3秒前
辣个男子发布了新的文献求助10
3秒前
发疯的游子完成签到 ,获得积分10
4秒前
斯文败类应助wpeng采纳,获得10
4秒前
言叶发布了新的文献求助150
4秒前
缓慢冰淇淋完成签到,获得积分10
4秒前
苏幕完成签到,获得积分10
5秒前
cloudmeadow完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
cloudmeadow发布了新的文献求助10
9秒前
9秒前
baby的跑男完成签到,获得积分10
10秒前
SciGPT应助GK采纳,获得10
11秒前
11秒前
12秒前
yesiDo发布了新的文献求助30
12秒前
13秒前
Ava应助虚幻穆采纳,获得10
14秒前
玉宝儿完成签到,获得积分20
14秒前
CipherSage应助gwh采纳,获得10
15秒前
无语的电源完成签到,获得积分10
15秒前
十七应助正直的龙五采纳,获得10
16秒前
16秒前
阿浩发布了新的文献求助10
16秒前
lili发布了新的文献求助10
17秒前
17秒前
yesiDo完成签到,获得积分10
19秒前
在水一方应助科研轮回采纳,获得10
19秒前
慕青应助未知采纳,获得10
20秒前
20秒前
yolo发布了新的文献求助10
21秒前
回家吃饭饭完成签到 ,获得积分10
22秒前
Singularity应助陈杰采纳,获得10
23秒前
辣个男子完成签到,获得积分10
23秒前
24秒前
Selonfer完成签到,获得积分10
25秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
Toward personalized care for insomnia in the US Army: a machine learning model to predict response to cognitive behavioral therapy for insomnia 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3392384
求助须知:如何正确求助?哪些是违规求助? 3003056
关于积分的说明 8807166
捐赠科研通 2689817
什么是DOI,文献DOI怎么找? 1473309
科研通“疑难数据库(出版商)”最低求助积分说明 681513
邀请新用户注册赠送积分活动 674348