基因分型
单核苷酸多态性
计算生物学
分子反转探针
生物
SNP基因分型
遗传学
基因
基因型
作者
Yuedong Zhu,Yanan Lin,Bin Gong,Yan Zhang,Gaoxing Su,Yanyan Yu
标识
DOI:10.1016/j.bios.2024.116255
摘要
Single nucleotide polymorphisms (SNPs) are closely associated with many biological processes, including genetic disease, tumorigenesis, and drug metabolism. Accurate and efficient SNP determination has been proved pivotal in pharmacogenomics and diagnostics. Herein, a universal and high-fidelity genotyping platform is established based on the dual toeholds regulated Cas12a sensing methodology. Different from the conventional single stranded or double stranded activation mode, the dual toeholds regulated mode overcomes protospacer adjacent motif (PAM) limitation via cascade toehold mediated strand displacement reaction, which is highly universal and ultra-specific. To enhance the sensitivity for biological samples analysis, a modified isothermal recombinant polymerase amplification (RPA) strategy is developed via utilizing deoxythymidine substituted primer and uracil-DNA glycosylase (UDG) treatment, designated as RPA-UDG. The dsDNA products containing single stranded toehold domain generated in the RPA-UDG allow further incorporation with dual toeholds regulated Cas12a platform for high-fidelity human sample genotyping. We discriminate all the single-nucleotide polymorphisms of ApoE gene at rs429358 and rs7412 loci with human buccal swab samples with 100% accuracy. Furthermore, we engineer visual readout of genotyping results by exploiting commercial lateral flow strips, which opens new possibilities for field deployable implementation.
科研通智能强力驱动
Strongly Powered by AbleSci AI