电催化剂
材料科学
纳米颗粒
催化作用
甲醇燃料
甲醇
化学工程
铂金
钝化
碳化物
电化学
钽
溶解
纳米技术
化学
图层(电子)
电极
复合材料
冶金
有机化学
物理化学
工程类
作者
Zhenshu Wang,Jin Soo Kang,Daniel Göhl,Paul Paciok,Danelle S. Gonçalves,Hyung‐Kyu Lim,Daniela Zanchet,Marc Heggen,Yang Shao‐Horn,Marc Ledendecker,Yuriy Román‐Leshkov
标识
DOI:10.1002/aenm.202304092
摘要
Abstract Core–shell architectures provide great opportunities to improve catalytic activity, but achieving nanoparticle stability under electrochemical cycling remains challenging. Herein, core–shell nanoparticles comprising atomically thin Pt shells over earth‐abundant TaC cores are synthesized and used as highly durable electrocatalysts for the methanol oxidation reaction (MOR) and the oxygen reduction reaction (ORR) needed to drive direct methanol fuel cells (DMFCs). Characterization data show that a thin oxidic passivation layer protects the TaC core from undergoing dissolution in the fuel cell‐relevant potential range, enabling the use of partially covered Pt/TaC core–shell nanoparticles for MOR and ORR with high stability and enhanced catalytic performance. Specifically, at the anode the surface‐oxidized TaC further enhances MOR activity compared to conventional Pt nanoparticles. At the cathode, the Pt/TaC catalyst feature increases tolerance to methanol crossover. These results show unique synergistic advantages of the core–shell particles and open opportunities to tailor catalytic properties for electrocatalytic reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI