重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Improving image quality with deep learning image reconstruction in double-low-dose head CT angiography compared with standard dose and adaptive statistical iterative reconstruction

医学 图像质量 图像噪声 核医学 迭代重建 有效剂量(辐射) 标准差 血管造影 放射科 数学 图像(数学) 人工智能 计算机科学 统计
作者
Xin Huang,Wenzhe Zhao,Geliang Wang,Yiming Wang,Jianying Li,Yanshou Li,Qiang Zeng,Jianxin Guo
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:96 (1143) 被引量:2
标识
DOI:10.1259/bjr.20220625
摘要

Objective: To demonstrate similar image quality with deep learning image reconstruction (DLIR) in reduced contrast medium (CM) and radiation dose (double-low-dose) head CT angiography (CTA), in comparison with standard-dose and adaptive statistical iterative reconstruction-Veo (ASIR-V). Methods: A prospective study was performed in 63 patients who under head CTA using 256-slice CT. Patients were randomized into either the standard-dose group (n = 38) with 40 ml of Iopromide (370 mgI ml −1 at 4.5 ml s −1 ); or a double-low-dose group (n = 25) with CM of 25 ml at 3.0 ml s −1 . For image reconstruction, the double-low-dose group used DLIR-M and DLIR-H strength, and the standard-dose group used ASIR-V with 50% strength. The CT value and standard deviation, signal-to-noise ratio and contrast-to-noise ratio of posterior fossa, neck muscles, carotid, vertebral and middle cerebral arteries were measured. The image noise, vessel edge and structure blurring and overall image quality were assessed by using a 5-grade method. The double-low-dose group reduced CM dose by 37.5% and CT dose index by 41% compared with the standard-dose group. DLIR further reduced the standard deviation value of the middle cerebral artery and posterior fossa and provided better overall subjective image quality (p < 0.05). Conclusion: DLIR significantly reduces image noise and provides higher overall image quality in the double-low-dose CTA. Advances in knowledge It is feasible to reduce CM dose by 37.5% and volume CT dose index by 41% with the combination of 80 kVp and DLIR in head CTA. Compared with ASIR-V, DLIR further reduces image noise and achieves better image quality with reduced contrast and radiation dose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真乌冬面完成签到 ,获得积分10
刚刚
刚刚
刚刚
香蕉觅松完成签到,获得积分20
1秒前
2秒前
文静发布了新的文献求助10
2秒前
艾达乳酪块完成签到,获得积分10
3秒前
3秒前
4秒前
学术垃圾完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
糊涂的青梦完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
5秒前
呀呀呀我来啦完成签到,获得积分10
5秒前
汉堡包应助ruqinmq采纳,获得10
6秒前
6秒前
桐桐应助布吉岛采纳,获得10
6秒前
科目三应助壮观的可以采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
科研通AI6应助HHHu采纳,获得10
7秒前
可靠采波发布了新的文献求助10
7秒前
CipherSage应助瑾宜采纳,获得10
8秒前
福尔摩云发布了新的文献求助10
9秒前
9秒前
靓仔发布了新的文献求助10
10秒前
10秒前
鹿芗泽发布了新的文献求助30
10秒前
mumufan完成签到,获得积分10
10秒前
允期发布了新的文献求助10
10秒前
好货分享应助菠菜采纳,获得10
11秒前
GJT0427gjt完成签到 ,获得积分10
12秒前
杨帆完成签到,获得积分10
12秒前
hautzhl发布了新的文献求助10
12秒前
桐桐应助vidi采纳,获得10
13秒前
英姑应助依小米采纳,获得30
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465838
求助须知:如何正确求助?哪些是违规求助? 4570083
关于积分的说明 14322455
捐赠科研通 4496549
什么是DOI,文献DOI怎么找? 2463392
邀请新用户注册赠送积分活动 1452295
关于科研通互助平台的介绍 1427497