Improving image quality with deep learning image reconstruction in double-low-dose head CT angiography compared with standard dose and adaptive statistical iterative reconstruction

医学 图像质量 图像噪声 核医学 迭代重建 有效剂量(辐射) 标准差 血管造影 放射科 数学 图像(数学) 人工智能 计算机科学 统计
作者
Xin Huang,Wenzhe Zhao,Geliang Wang,Yiming Wang,Jianying Li,Yanshou Li,Qiang Zeng,Jianxin Guo
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:96 (1143) 被引量:2
标识
DOI:10.1259/bjr.20220625
摘要

Objective: To demonstrate similar image quality with deep learning image reconstruction (DLIR) in reduced contrast medium (CM) and radiation dose (double-low-dose) head CT angiography (CTA), in comparison with standard-dose and adaptive statistical iterative reconstruction-Veo (ASIR-V). Methods: A prospective study was performed in 63 patients who under head CTA using 256-slice CT. Patients were randomized into either the standard-dose group (n = 38) with 40 ml of Iopromide (370 mgI ml −1 at 4.5 ml s −1 ); or a double-low-dose group (n = 25) with CM of 25 ml at 3.0 ml s −1 . For image reconstruction, the double-low-dose group used DLIR-M and DLIR-H strength, and the standard-dose group used ASIR-V with 50% strength. The CT value and standard deviation, signal-to-noise ratio and contrast-to-noise ratio of posterior fossa, neck muscles, carotid, vertebral and middle cerebral arteries were measured. The image noise, vessel edge and structure blurring and overall image quality were assessed by using a 5-grade method. The double-low-dose group reduced CM dose by 37.5% and CT dose index by 41% compared with the standard-dose group. DLIR further reduced the standard deviation value of the middle cerebral artery and posterior fossa and provided better overall subjective image quality (p < 0.05). Conclusion: DLIR significantly reduces image noise and provides higher overall image quality in the double-low-dose CTA. Advances in knowledge It is feasible to reduce CM dose by 37.5% and volume CT dose index by 41% with the combination of 80 kVp and DLIR in head CTA. Compared with ASIR-V, DLIR further reduces image noise and achieves better image quality with reduced contrast and radiation dose.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
郭雨完成签到,获得积分10
1秒前
hbkj完成签到 ,获得积分10
2秒前
早睡早起完成签到,获得积分10
2秒前
清醒完成签到,获得积分20
3秒前
新手上路完成签到,获得积分10
4秒前
华仔应助有个公子她姓李采纳,获得10
4秒前
Silole完成签到,获得积分10
5秒前
轻松博超完成签到,获得积分10
5秒前
LiDaYang完成签到,获得积分10
6秒前
FashionBoy应助明亮灭绝采纳,获得10
6秒前
7秒前
赘婿应助文艺的严青采纳,获得10
9秒前
kelien1205完成签到 ,获得积分10
9秒前
慕容博完成签到 ,获得积分10
9秒前
10秒前
十几完成签到,获得积分10
10秒前
科研通AI2S应助清醒采纳,获得10
10秒前
大气的尔蓝完成签到,获得积分10
10秒前
2182265539发布了新的文献求助10
11秒前
线条完成签到 ,获得积分10
11秒前
13秒前
13秒前
Dreamhappy完成签到,获得积分10
14秒前
15秒前
16秒前
didi完成签到 ,获得积分10
17秒前
17秒前
文艺寄松完成签到,获得积分10
18秒前
谢小盟应助黄先生采纳,获得10
18秒前
Novoa应助科研通管家采纳,获得30
18秒前
蛇從革应助科研通管家采纳,获得30
18秒前
所所应助科研通管家采纳,获得10
18秒前
qishui完成签到 ,获得积分10
18秒前
18秒前
执着谷兰应助科研通管家采纳,获得10
18秒前
19秒前
wanci应助科研通管家采纳,获得10
19秒前
19秒前
烟花应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741647
求助须知:如何正确求助?哪些是违规求助? 5403409
关于积分的说明 15343085
捐赠科研通 4883236
什么是DOI,文献DOI怎么找? 2624979
邀请新用户注册赠送积分活动 1573765
关于科研通互助平台的介绍 1530709