Weakly supervised semantic segmentation of histological tissue via attention accumulation and pixel-level contrast learning

分割 计算机科学 人工智能 模式识别(心理学) 特征(语言学) 卷积神经网络 残余物 像素 对比度(视觉) 图像分割 算法 语言学 哲学
作者
Yongqi Han,Lianglun Cheng,Guoheng Huang,Guo Zhong,Jiahua Li,Xiaochen Yuan,Hongrui Liu,Jiao Li,Jian Zhou,Muyan Cai
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (4): 045010-045010 被引量:4
标识
DOI:10.1088/1361-6560/acaeee
摘要

Abstract Objective . Histopathology image segmentation can assist medical professionals in identifying and diagnosing diseased tissue more efficiently. Although fully supervised segmentation models have excellent performance, the annotation cost is extremely expensive. Weakly supervised models are widely used in medical image segmentation due to their low annotation cost. Nevertheless, these weakly supervised models have difficulty in accurately locating the boundaries between different classes of regions in pathological images, resulting in a high rate of false alarms Our objective is to design a weakly supervised segmentation model to resolve the above problems. Approach . The segmentation model is divided into two main stages, the generation of pseudo labels based on class residual attention accumulation network (CRAANet) and the semantic segmentation based on pixel feature space construction network (PFSCNet). CRAANet provides attention scores for each class through the class residual attention module, while the Attention Accumulation (AA) module overlays the attention feature maps generated in each training epoch. PFSCNet employs a network model containing an inflated convolutional residual neural network and a multi-scale feature-aware module as the segmentation backbone, and proposes dense energy loss and pixel clustering modules are based on contrast learning to solve the pseudo-labeling-inaccuracy problem. Main results . We validate our method using the lung adenocarcinoma (LUAD-HistoSeg) dataset and the breast cancer (BCSS) dataset. The results of the experiments show that our proposed method outperforms other state-of-the-art methods on both datasets in several metrics. This suggests that it is capable of performing well in a wide variety of histopathological image segmentation tasks. Significance . We propose a weakly supervised semantic segmentation network that achieves approximate fully supervised segmentation performance even in the case of incomplete labels. The proposed AA and pixel-level contrast learning also make the edges more accurate and can well assist pathologists in their research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助rabwang采纳,获得10
刚刚
呆萌斯完成签到,获得积分10
刚刚
汉堡包应助ll采纳,获得10
1秒前
1秒前
善良绮菱发布了新的文献求助10
2秒前
上官若男应助xiaoyezi123采纳,获得10
2秒前
3秒前
Pt发布了新的文献求助10
3秒前
灌灌灌灌完成签到,获得积分10
4秒前
gtm应助lyh采纳,获得10
4秒前
cy发布了新的文献求助10
5秒前
5秒前
wuya完成签到,获得积分10
7秒前
可爱安筠发布了新的文献求助10
8秒前
zrw发布了新的文献求助10
8秒前
醉蓝发布了新的文献求助10
9秒前
lanxin发布了新的文献求助10
10秒前
10秒前
赵李艺完成签到 ,获得积分10
11秒前
完美世界应助hehe采纳,获得10
12秒前
13秒前
山橘月完成签到,获得积分10
13秒前
14秒前
香蕉觅云应助可乐采纳,获得10
15秒前
xiaoyezi123发布了新的文献求助10
16秒前
粥粥完成签到,获得积分20
16秒前
16秒前
酷波er应助Ww采纳,获得10
16秒前
归玖完成签到,获得积分10
16秒前
cccr02完成签到 ,获得积分10
17秒前
传奇3应助June采纳,获得10
17秒前
ph完成签到,获得积分10
17秒前
Aiden完成签到,获得积分10
17秒前
18秒前
lyh完成签到,获得积分10
18秒前
hc完成签到,获得积分10
19秒前
粥粥发布了新的文献求助10
19秒前
20秒前
22秒前
wei_ahpu完成签到,获得积分10
22秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3722292
求助须知:如何正确求助?哪些是违规求助? 3268090
关于积分的说明 9953116
捐赠科研通 2982215
什么是DOI,文献DOI怎么找? 1635900
邀请新用户注册赠送积分活动 776706
科研通“疑难数据库(出版商)”最低求助积分说明 746533