Domain Adaptation for Medical Image Classification without Source Data

计算机科学 判别式 人工智能 分类器(UML) 聚类分析 模式识别(心理学) 条件随机场 正规化(语言学) 域适应 上下文图像分类 机器学习 数据挖掘 图像(数学)
作者
Chuan Zhou,Wei Zhang,Hang Chen,Leiting Chen
标识
DOI:10.1109/bibm55620.2022.9995395
摘要

Although deep learning has achieved promising results on medical image classification, the domain shift between training and testing datasets leads to a low prediction accuracy. Domain adaptation is a effective solution. However, due to privacy issues and the lack of annotated data, it’s hard for conventional domain adaptation methods to access source images and labeled target images. To tackle this issue, we propose a novel framework that only requires unlabeled target domain data. This framework has two modules, one is based on class conditional generative adversarial net for source domain generation and another is for classification m odel t raining. S pecifically, the generator can generate target-style data as the pseudo-source data using random noise and a given label to improve the classifier. The increased a ccuracy of the classifier also can guide the generator. Besides, we introduce weight regularization and clustering-based regularization to keep the training process stable and fully explore the discriminative information. We take diabetic retinopathy grade classification as our task and conduct experiments on three datasets which are EysPACS, MESSIDOR and IDRiD. The experimental results show that our method performs well on only unlabeled target data, which proves that it is a general method and can be widely used in the field of medical image classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈哈发布了新的文献求助10
刚刚
哈哈哈发布了新的文献求助10
2秒前
星星睡着了完成签到 ,获得积分10
5秒前
cossen完成签到,获得积分10
6秒前
852应助wang采纳,获得10
6秒前
平陵完成签到,获得积分20
8秒前
kl完成签到 ,获得积分10
8秒前
8秒前
yuan完成签到,获得积分20
8秒前
9秒前
无心的紫山完成签到,获得积分10
9秒前
11秒前
13秒前
yuan发布了新的文献求助30
14秒前
17秒前
超级芷云发布了新的文献求助10
18秒前
乔婉婷发布了新的文献求助10
20秒前
雪山飞龙发布了新的文献求助10
22秒前
情怀应助科研通管家采纳,获得10
23秒前
顾矜应助科研通管家采纳,获得10
23秒前
李健应助科研通管家采纳,获得10
23秒前
爆米花应助科研通管家采纳,获得10
23秒前
23秒前
华仔应助科研通管家采纳,获得10
23秒前
深情安青应助科研通管家采纳,获得10
24秒前
24秒前
斯文败类应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
JamesPei应助科研通管家采纳,获得10
24秒前
在水一方应助超级芷云采纳,获得10
24秒前
Akim应助酒酿是也采纳,获得10
25秒前
阿聪发布了新的文献求助100
28秒前
笨笨念文完成签到 ,获得积分10
28秒前
舒心莫言完成签到,获得积分10
28秒前
汉堡包应助刘岚采纳,获得10
29秒前
29秒前
waitingfor完成签到,获得积分10
32秒前
赘婿应助爱听歌凤灵采纳,获得10
32秒前
小葵完成签到,获得积分10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497949
关于积分的说明 11089475
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309