Plasma protein biomarkers predict both the development of persistent autoantibodies and type 1 diabetes 6 months prior to the onset of autoimmunity: the TEDDY Study

自身免疫 自身抗体 1型糖尿病 蛋白质组学 免疫学 生物标志物 医学 生物 糖尿病 抗体 内分泌学 遗传学 基因
作者
Ernesto Nakayasu,Lisa Bramer,Charles Ansong,Athena Schepmoes,Thomas Fillmore,Marina Gritsenko,Therese RW Clauss,Yuqian Gao,Paul Piehowski,Bryan Stafill,David W. Engel,Daniel J. Orton,Ronald J. Moore,Weijun Qian,Salvatore Sechi,Brigitte I. Frohnert,Jorma Toppari,Anette G. Ziegler,Åke Lernmark,William Hagopian,Beena Akolkar,Richard Smith,Marian Rewers,Bobbie‐Jo Webb‐Robertson,Thomas O. Metz
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:2
标识
DOI:10.1101/2022.12.07.22283187
摘要

Abstract Type 1 diabetes (T1D) results from an autoimmune destruction of pancreatic β cells. A significant gap in understanding the disease cause is the lack of predictive biomarkers for each of its developmental stages. Here, we conducted a blinded, two-phase case-control plasma proteomics analysis of children enrolled in the TEDDY study to identify biomarkers predictive of autoimmunity and T1D development. First, we performed untargeted proteomics analyses of 2,252 samples from 184 individuals and identified 376 regulated proteins. Complement/coagulation, inflammatory signaling and metabolic proteins were regulated even prior to autoimmunity onset. Extracellular matrix proteins and antigen presentation were differentially regulated in individuals with autoimmunity who progressed to T1D versus those who maintained normoglycemia. We then performed targeted proteomics measurements of 167 proteins in 6,426 samples from 990 individuals and validated 83 biomarkers. A machine learning analysis predicted both the development of persistent autoantibodies and T1D onset 6 months before autoimmunity initiation, with an area under the receiver operating characteristic curve of 0.871 and 0.918, respectively. Our study identified and validated biomarkers highlighting pathways affected in different stages of T1D development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
HC完成签到 ,获得积分10
2秒前
姚姚的赵赵完成签到,获得积分10
2秒前
JamesPei应助大豪子采纳,获得30
3秒前
jy发布了新的文献求助10
3秒前
3秒前
陆靖易发布了新的文献求助10
3秒前
LQW完成签到,获得积分20
4秒前
5秒前
plant完成签到,获得积分10
5秒前
lyt完成签到,获得积分10
5秒前
6秒前
7秒前
敏感网络完成签到,获得积分20
8秒前
kh453发布了新的文献求助10
8秒前
8秒前
子爵木完成签到 ,获得积分10
8秒前
HC发布了新的文献求助30
9秒前
无限鞅发布了新的文献求助10
9秒前
SherlockLiu完成签到,获得积分20
9秒前
10秒前
吴岳发布了新的文献求助10
11秒前
陆靖易完成签到,获得积分10
11秒前
13秒前
Bella完成签到 ,获得积分10
13秒前
yhl发布了新的文献求助10
14秒前
15秒前
震动的乐天完成签到,获得积分10
16秒前
17秒前
18秒前
Hello应助xuanxuan采纳,获得10
19秒前
村长热爱美丽完成签到 ,获得积分10
19秒前
一衣完成签到,获得积分20
19秒前
19秒前
21秒前
明理世倌发布了新的文献求助10
21秒前
今后应助niu1采纳,获得10
22秒前
KONG发布了新的文献求助10
22秒前
爆米花应助成梦采纳,获得10
22秒前
yhl完成签到,获得积分20
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808