Linking ecosystem service supply and demand to landscape ecological risk for adaptive management: The Qinghai-Tibet Plateau case

生态系统服务 适应性管理 环境资源管理 风险管理 风险评估 生态学 地理 生态系统 环境科学 业务 计算机科学 财务 计算机安全 生物
作者
Yuanxin Liu,Mingyue Zhao
出处
期刊:Ecological Indicators [Elsevier]
卷期号:146: 109796-109796 被引量:9
标识
DOI:10.1016/j.ecolind.2022.109796
摘要

Clarifying the spatiotemporal variations in ecosystem service (ES) supply and demand helps to understand natural-social coupled systems, and comprehensive landscape ecological risk (LER) assessment is the basis for risk warning. However, it is still a huge challenge to incorporate ES supply and demand into ecological adaptive management. In this study, we defined and identified ES supply and demand risk (ESSDR), and integrated it into LER assessment to develop a comprehensive ecological risk framework. Using InVEST model and multi-source data, this study explicitly quantified the spatiotemporal variations of ESSDR of soil retention (ESSDRI_SR), carbon sequestration (ESSDRI_CS), water yield (ESSDRI_WY), LER of Qinghai Province in the Qinghai-Tibet Plateau during 2010–2020. The results indicated that all ESSDRs and LER showed spatial heterogeneity. Among the ESSDR areas, the low risk areas accounted for the highest proportion, with ESSDRI_CS, ESSDRI_SR and ESSDRI_WY accounting for 4.83%, 14.84% and 12.45%, respectively. The area of very high and high LER decreased by 1.5% and 5.45% from 2010 to 2020, reaching 19.05% and 22.74%, respectively. The comprehensive ecological risk assessment showed that over 60% of Qinghai is designated as having ecological risks. However, the region with the most risk co-occurrence (risk group 4) accounted for 0.11% of Qinghai's area. At last, adaptive suggestions were proposed for risk management and ecological conservation. This research provides and illustrates an innovative method for comprehensive ecological risk assessment, which could substantially enhance the scientific foundation on which ecological risk assessment is based and policy-making that follow compared to traditional LER framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bener完成签到,获得积分10
2秒前
不吐泡的玻璃鱼完成签到,获得积分10
3秒前
ding应助幽默的依瑶采纳,获得10
5秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
6秒前
华西胖旭完成签到,获得积分10
6秒前
7秒前
到底是谁还在做牛马完成签到 ,获得积分10
7秒前
10秒前
HuanChen完成签到 ,获得积分10
10秒前
黄启烽完成签到,获得积分10
12秒前
平淡安容完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
拼搏的盼山完成签到 ,获得积分10
15秒前
红木白花完成签到,获得积分10
15秒前
Ling完成签到 ,获得积分10
16秒前
c445507405完成签到 ,获得积分10
16秒前
不安便当发布了新的文献求助10
17秒前
JESSIE完成签到,获得积分10
17秒前
鲤鱼忆霜发布了新的文献求助10
17秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
Heat_rain完成签到 ,获得积分10
20秒前
北枳完成签到,获得积分10
20秒前
红木白花发布了新的文献求助10
21秒前
侯赛雷完成签到,获得积分10
21秒前
22秒前
菠萝吹雪完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
25秒前
TonyXWZhang完成签到,获得积分10
25秒前
123456qi完成签到,获得积分10
27秒前
不安便当完成签到,获得积分20
27秒前
zzz完成签到,获得积分10
29秒前
天真的棉花糖完成签到 ,获得积分10
29秒前
29秒前
典雅小甜瓜完成签到,获得积分20
29秒前
瓦罐完成签到 ,获得积分10
30秒前
LIUJIE完成签到,获得积分10
30秒前
33秒前
Mr.Ren完成签到,获得积分10
34秒前
谨慎纸飞机完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671581
求助须知:如何正确求助?哪些是违规求助? 4920068
关于积分的说明 15135054
捐赠科研通 4830410
什么是DOI,文献DOI怎么找? 2587061
邀请新用户注册赠送积分活动 1540682
关于科研通互助平台的介绍 1498986