Linking ecosystem service supply and demand to landscape ecological risk for adaptive management: The Qinghai-Tibet Plateau case

生态系统服务 适应性管理 环境资源管理 风险管理 风险评估 生态学 地理 生态系统 环境科学 业务 计算机科学 财务 计算机安全 生物
作者
Yuanxin Liu,Mingyue Zhao
出处
期刊:Ecological Indicators [Elsevier]
卷期号:146: 109796-109796 被引量:9
标识
DOI:10.1016/j.ecolind.2022.109796
摘要

Clarifying the spatiotemporal variations in ecosystem service (ES) supply and demand helps to understand natural-social coupled systems, and comprehensive landscape ecological risk (LER) assessment is the basis for risk warning. However, it is still a huge challenge to incorporate ES supply and demand into ecological adaptive management. In this study, we defined and identified ES supply and demand risk (ESSDR), and integrated it into LER assessment to develop a comprehensive ecological risk framework. Using InVEST model and multi-source data, this study explicitly quantified the spatiotemporal variations of ESSDR of soil retention (ESSDRI_SR), carbon sequestration (ESSDRI_CS), water yield (ESSDRI_WY), LER of Qinghai Province in the Qinghai-Tibet Plateau during 2010–2020. The results indicated that all ESSDRs and LER showed spatial heterogeneity. Among the ESSDR areas, the low risk areas accounted for the highest proportion, with ESSDRI_CS, ESSDRI_SR and ESSDRI_WY accounting for 4.83%, 14.84% and 12.45%, respectively. The area of very high and high LER decreased by 1.5% and 5.45% from 2010 to 2020, reaching 19.05% and 22.74%, respectively. The comprehensive ecological risk assessment showed that over 60% of Qinghai is designated as having ecological risks. However, the region with the most risk co-occurrence (risk group 4) accounted for 0.11% of Qinghai's area. At last, adaptive suggestions were proposed for risk management and ecological conservation. This research provides and illustrates an innovative method for comprehensive ecological risk assessment, which could substantially enhance the scientific foundation on which ecological risk assessment is based and policy-making that follow compared to traditional LER framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赤练仙子完成签到,获得积分10
2秒前
MnO2fff应助zsyzxb采纳,获得20
5秒前
kingwill应助zsyzxb采纳,获得20
5秒前
顺利鱼完成签到,获得积分10
6秒前
8秒前
9秒前
Xx.完成签到,获得积分10
10秒前
星辰大海应助内向凌兰采纳,获得10
10秒前
10秒前
wuzhizhiya完成签到,获得积分10
11秒前
12秒前
rudjs发布了新的文献求助10
12秒前
15秒前
Ava应助何糖采纳,获得10
15秒前
桐桐应助美丽的芷烟采纳,获得10
15秒前
野子完成签到,获得积分10
16秒前
情怀应助小D采纳,获得30
17秒前
yuan发布了新的文献求助10
17秒前
berry发布了新的文献求助10
18秒前
18秒前
淡淡采白发布了新的文献求助10
19秒前
思源应助勤恳慕蕊采纳,获得10
19秒前
知犯何逆完成签到 ,获得积分10
20秒前
啊哈完成签到,获得积分10
20秒前
21秒前
21秒前
Draven完成签到 ,获得积分10
21秒前
tmpstlml发布了新的文献求助10
22秒前
张红梨完成签到,获得积分10
22秒前
迷迷完成签到,获得积分20
23秒前
23秒前
科研通AI2S应助chen采纳,获得10
24秒前
穿山甲坐飞机完成签到 ,获得积分10
24秒前
25秒前
美丽的芷烟给美丽的芷烟的求助进行了留言
25秒前
科研通AI5应助经年采纳,获得10
25秒前
25秒前
勤劳晓亦应助木头人采纳,获得10
26秒前
科研通AI5应助想瘦的海豹采纳,获得10
26秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808