亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Raman spectroscopy and NIR hyperspectral imaging for in-line estimation of fatty acid features in salmon fillets

拉曼光谱 腰肉 圆角(机械) 化学 高光谱成像 近红外光谱 鱼片 分析化学(期刊) 食品科学 遥感 色谱法 渔业 材料科学 光学 地质学 复合材料 生物 物理
作者
Tiril Aurora Lintvedt,Petter Vejle Andersen,Nils Kristian Afseth,Karsten Heia,Stein‐Kato Lindberg,Jens Petter Wold
出处
期刊:Talanta [Elsevier]
卷期号:254: 124113-124113 被引量:17
标识
DOI:10.1016/j.talanta.2022.124113
摘要

Raman spectroscopy was compared with near infrared (NIR) hyperspectral imaging for determination of fat composition (%EPA + DHA) in salmon fillets at short exposure times. Fillets were measured in movement for both methods. Salmon were acquired from several different farming locations in Norway with different feeding regimes, representing a realistic variation of salmon in the market. For Raman, we investigated three manual scanning strategies; i) line scan of loin, ii) line scan of belly and iii) sinusoidal scan of belly at exposure times of 2s and 4s. NIR images were acquired while the fillets moved on a conveyor belt at 40 cm/s, which corresponds to an acquisition time of 1s for a 40 cm long fillet. For NIR images, three different regions of interest (ROI) were investigated including the i) whole fillet, ii) belly segment, and iii) loin segment. For both Raman and NIR measurements, we investigated an untrimmed and trimmed version of the fillets, both relevant for industrial in-line evaluation. For the trimmed fillets, a fat rich deposition layer in the belly was removed. The %EPA + DHA models were validated by cross validation (N = 51) and using an independent test set (N = 20) which was acquired in a different season. Both Raman and NIR showed promising results and high performances in the cross validation, with R2CV = 0.96 for Raman at 2s exposure and R2CV = 0.97 for NIR. High performances were obtained also for the test set, but while Raman had low and stable biases for the test set, the biases were high and varied for the NIR measurements. Analysis of variance on the squared test set residuals showed that performance for Raman measurements were significantly higher than NIR at 1% significance level (p = 0.000013) when slope-and-bias errors were not corrected, but not significant when residuals were slope-and-bias corrected (p = 0.28). This indicated that NIR was more sensitive to matrix effects. For Raman, signal-to-noise ratio was the main limitation and there were indications that Raman was close to a critical sample exposure time at the 2s signal accumulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang完成签到,获得积分10
2秒前
OCDer完成签到,获得积分0
7秒前
15秒前
Noob_saibot完成签到,获得积分10
24秒前
John完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
yuqinghui98完成签到 ,获得积分10
1分钟前
orixero应助乐观含巧采纳,获得10
2分钟前
纳兰若微完成签到,获得积分0
2分钟前
研友_VZG7GZ应助纳兰若微采纳,获得10
2分钟前
3分钟前
3分钟前
4分钟前
现代水蓉完成签到 ,获得积分10
4分钟前
俏皮绿蓉完成签到 ,获得积分10
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
SciGPT应助Wei采纳,获得10
5分钟前
6分钟前
6分钟前
韩帅发布了新的文献求助30
6分钟前
小蘑菇应助韩帅采纳,获得10
6分钟前
6分钟前
6分钟前
7分钟前
7分钟前
7分钟前
7分钟前
qqq关闭了qqq文献求助
7分钟前
叶知秋完成签到,获得积分10
7分钟前
8分钟前
研友_LmgOaZ完成签到 ,获得积分0
8分钟前
8分钟前
qqq发布了新的文献求助10
8分钟前
qqq完成签到,获得积分10
8分钟前
8分钟前
滕皓轩完成签到 ,获得积分10
9分钟前
尔尔发布了新的文献求助10
9分钟前
9分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265486
求助须知:如何正确求助?哪些是违规求助? 2905557
关于积分的说明 8334024
捐赠科研通 2575835
什么是DOI,文献DOI怎么找? 1400135
科研通“疑难数据库(出版商)”最低求助积分说明 654702
邀请新用户注册赠送积分活动 633532